Skip to main content
Log in

Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the eigenvalue problem for the Hartree operator with a small parameter multiplying the nonlinearity. We obtain asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundaries of spectral clusters formed near the energy levels of the unperturbed operator. Near the circle where the solution is localized, the leading term of the expansion is a solution of the two-dimensional oscillator problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogoliubov, Ukr. Mat. Zh., 2, No. 2, 3–24 (1950).

    Google Scholar 

  2. S. I. Pekar, Studies in Electron Theory of Crystals [in Russian], Gostekhizdat, Moscow (1951).

    Google Scholar 

  3. L. P. Pitaevskii, Phys. Uspekhi, 41, 569–580 (1998).

    Article  Google Scholar 

  4. D. R. Hartree, The Calculation of Atomic Structures, Wiley, New York (1957).

    MATH  Google Scholar 

  5. S. A. Achmanov, R. V. Hocklov, and A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media,” in: Laserhandbuch, Vol. 2, North-Holland, Amsterdam (1972), pp. 5–108.

    Google Scholar 

  6. E. H. Lieb and B. Simon, Commun. Math. Phys., 53, 185–194 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  7. P. L. Lions, Commun. Math. Phys., 109, 33–97 (1987).

    Article  ADS  MATH  Google Scholar 

  8. M. V. Karasev and Yu. V. Osipov, Theor. Math. Phys., 52, 789–793 (1982).

    Article  MathSciNet  Google Scholar 

  9. V. D. Lakhno, ed., Excited Polaron States in Condensed Media [in Russian], ONTI NTsBI AN SSSR, Pushchino (1990).

    Google Scholar 

  10. A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984); English transl. (Math. Its Appl., Sov. Ser., Vol. 61), Kluwer Academic, Dordrecht (1990).

    Google Scholar 

  11. M. V. Karasev and V. P. Maslov, J. Soviet Math., 15, 273–368 (1981).

    Article  Google Scholar 

  12. S. I. Chernykh, Theor. Math. Phys., 52, 939–941 (1982).

    Article  MathSciNet  Google Scholar 

  13. V. P. Maslov, The WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  14. I. V. Simenog, Theor. Math. Phys., 30, 263–268 (1977).

    Article  MathSciNet  Google Scholar 

  15. M. V. Karasev, “Quantum reduction to the orbits of algebras of symmetries and the Ehrenfest problem [in Russian],” Preprint ITF-87-157P, ITF AN SSSR, Kiev (1987).

    Google Scholar 

  16. S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, and A. I. Shafarevich, Dokl. Akad. Nauk, 345, 743–745 (1995).

    MathSciNet  Google Scholar 

  17. M. V. Karasev and A. V. Pereskokov, Izv. Math., 65, 883–921 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. V. Karasev and A. V. Pereskokov, Izv. Math., 65, 1127–1168 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. V. Pereskokov, Theor. Math. Phys., 131, 775–790 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. V. V. Belov, F. N. Litvinets, and A. Yu. Trifonov, Theor. Math. Phys., 150, 21–33 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. V. Pereskokov, Theor. Math. Phys., 178, 76–92 (2014).

    Article  MATH  Google Scholar 

  22. A. V. Pereskokov, Nanostructures: Mathematical Physics and Modeling, 10, 77–112 (2014).

    Google Scholar 

  23. A. V. Pereskokv, Vestnik Moscow Power Engineering Institute, No. 6, 180–190 (2013).

    Google Scholar 

  24. M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances: I,” in: Quantum Algebras and Poisson Geometry in Mathematical Physics (Amer. Math. Soc. Transl. Ser. 2, Vol. 216), Amer. Math. Soc., Providence, R. I. (2005), pp. 1–17; Adv. Stud. Contemp. Math., 11, 33–56 (2005); Russ. J. Math. Phys., 13, 131–150 (2006).

    Google Scholar 

  25. L. I. Schiff, Quantum Mechanics, McGraw-Hill, London (1968).

    Google Scholar 

  26. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 3, Elliptic and Automorphic Functions, Lamé and Mathieu Functions, McGraw-Hill, New York (1955).

    Google Scholar 

  27. G. Szegö, Orthogonal Polynomials (Amer. Math. Soc. Colloq. Publ., Vol. 23), Amer. Math. Soc., Providence, R. I. (1959).

    MATH  Google Scholar 

  28. H. Bateman and A. Erdélyi, Higher Trancendental Functions, Vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pereskokov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 183, No. 1, pp. 78–89, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereskokov, A.V. Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle. Theor Math Phys 183, 516–526 (2015). https://doi.org/10.1007/s11232-015-0278-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-015-0278-y

Keywords

Navigation