Skip to main content
Log in

Darboux coordinates, Yang-Yang functional, and gauge theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2015

Abstract

The moduli space of flat SL 2 connections on a punctured Riemann surface Σ with fixed conjugacy classes of the monodromies around the punctures is endowed with a system of holomorphic Darboux coordinates in which the generating function of the variety of SL 2 -opers is identified with the universal part of the effective twisted superpotential of the corresponding four-dimensional N=2 supersymmetric theory subject to the two-dimensional Ω-deformation. This allows defining the Yang-Yang functionals for the quantum Hitchin system in terms of the classical geometry of the moduli space of local systems for the dual gauge group and relating it to the instanton counting of the four-dimensional gauge theories in the rank-one case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Faddeev, “The Bethe Ansatz,” Preprint SFB-288-70, Sonderforschungsbereich 288, Berlin (1993).

    Google Scholar 

  2. C. N. Yang and C. P. Yang, J. Math. Phys., 10, 1115–1122 (1969).

    Article  ADS  MATH  Google Scholar 

  3. C. N. Yang and C. P. Yang, Phys. Rev., 150, 321–327 (1966).

    Article  ADS  Google Scholar 

  4. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, Theor. Math. Phys., 40, 688–706 (1979).

    Article  MathSciNet  Google Scholar 

  5. M. Jimbo, T. Miwa, and F. Smirnov, J. Phys. A, 42, 304018 (2009); arXiv:0811.0439v2 [math-ph] (2008).

    Article  MathSciNet  Google Scholar 

  6. G. W. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys., 209, 97–121 (2000); arXiv:hep-th/9712241v2 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. A. A. Gerasimov and S. L. Shatashvili, Commun. Math. Phys., 277, 323–367 (2008); arXiv:hep-th/0609024v3 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. A. A. Gerasimov and S. L. Shatashvili, “Two-dimensional gauge theories and quantum integrable systems,” in: From Hodge Theory to Integrability and TQFT: tt*-Geometry (Proc. Symp. Pure Math., Vol. 78, R. Y. Donagi and K. Wendland, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 239–262; arXiv:0711.1472v1 [hep-th] (2007).

    Chapter  Google Scholar 

  9. E. Witten, J. Geom. Phys., 9, 303–368 (1992); arXiv:hep-th/9204083v1 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. A. S. Gorsky and N. Nekrasov, Theor. Math. Phys., 100, 874–878 (1994).

    Article  MathSciNet  Google Scholar 

  11. A. Gorsky and N. Nekrasov, Nucl. Phys. B, 436, 582–608 (1995); arXiv:hep-th/9401017v4 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. A. Gorsky and N. Nekrasov, “Elliptic Calogero-Moser system from two dimensional current algebra,” arXiv:hep-th/9401021v1 (1994).

    Google Scholar 

  13. A. Gorsky and N. Nekrasov, Nucl. Phys. B, 414, 213–238 (1994); arXiv:hep-th/9304047v1 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. N. A. Nekrasov and S. L. Shatashvili, Nucl. Phys. B Proc. Suppl., 192–193, 91–112 (2009); arXiv:0901.4744v2 [hep-th] (2009).

    Article  MathSciNet  Google Scholar 

  15. N. Nekrasov and S. Shatashvili, AIP Conf. Proc., 1134, 154–169 (2009).

    Article  ADS  Google Scholar 

  16. N. A. Nekrasov and S. L. Shatashvili, Prog. Theor. Phys. Suppl., 177, 105–119 (2009); arXiv:0901.4748v2 [hep-th] (2009).

    Article  ADS  MATH  Google Scholar 

  17. N. A. Nekrasov and S. L. Shatashvili, “Quantization of integrable systems and four dimensional gauge theories,” in: XVIth International Congress on Mathematical Physics (Prague, Czech Republic, 3–8 August 2009, P. Exne, ed.), World Scientific, Singapore (2010), pp. 265–289; arXiv:0908.4052v1 [hep-th] (2009).

    Chapter  Google Scholar 

  18. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466–474 (1995); arXiv:hep-th/9505035v2 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. E. Martinec and N. Warner, Nucl. Phys. B, 459, 97–112 (1996); arXiv:hep-th/9509161v2 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. R. Donagi and E. Witten, Nucl. Phys. B, 460, 299–334 (1996); arXiv:hep-th/9510101v2 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. R. Y. Donagi, “Seiberg-Witten integrable systems,” arXiv:alg-geom/9705010v1 (1997).

    Google Scholar 

  22. N. A. Nekrasov, Adv. Theor. Math. Phys., 7, 831–864 (2004); arXiv:hep-th/0206161v1 (2002).

    Article  MathSciNet  Google Scholar 

  23. A. Losev, N. Nekrasov, and S. L. Shatashvili, “Testing Seiberg-Witten solution,” in: Strings, Branes and Dualities (Cargése France, 26 May–14 June 1997, L. Baulieu, P. Di Francesco, M. Douglas, V. Kazakov, M. Picco, and P. Windey, eds.), Kluwer, Dordrecht (1999), pp. 359–372; arXiv:hep-th/9801061v1 (1998).

    Chapter  Google Scholar 

  24. A. Losev, N. Nekrasov, and S. L. Shatashvili, Nucl. Phys. B, 534, 549–611 (1998); arXiv:hep-th/9711108v2 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. E. Witten, “Some comments on string dynamics,” in: Proc. Strings’ 95: Future Perspectives in String Theory (USC, Los Angeles, 13–18 March 1995, I. Bars, P. Bouwknegt, J. Minahan, D. Nemeshansky, K. Pilch, H. Saleur, and N. Warner, eds.), World Scientific, Singapore (1996), pp. 501–523; arXiv:hep-th/9507121v1 (1995).

    Google Scholar 

  26. A. Strominger, Phys. Lett. B, 383, 44–47 (1996); arXiv:hep-th/9512059v1 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. E. Witten, Nucl. Phys. B, 500, 3–42 (1997); arXiv:hep-th/9703166v1 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. D. Gaiotto, “N=2 dualities,” arXiv:0904.2715v1 [hep-th] (2009).

    Google Scholar 

  29. D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin systems, and the WKB approximation,” arXiv:0907.3987v2 [hep-th] (2009).

    Google Scholar 

  30. N. Seiberg and E. Witten, Nucl. Phys. B, 431, 484–550 (1994); arXiv:hep-th/9408099v1 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. G. W. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys., 209, 77–95 (2000); arXiv:hep-th/9803265v3 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. E. Witten, Nucl. Phys. B, 443, 85–126 (1995); arXiv:hep-th/9503124v2 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. M. Atiyah and R. Bott, Phil. Trans. Roy. Soc. London Ser. A, 308, 523–615 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Witten, Commun. Math. Phys., 121, 351–399 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. A. M. Polyakov, Modern Phys. Lett. A, 2, 893–898 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Alekseev and S. L. Shatashvili, Nucl. Phys. B, 323, 719–733 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Verlinde and H. Verlinde, Nucl. Phys. B, 348, 457–489 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Verlinde, Nucl. Phys. B, 337, 652–680 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Witten, Nucl. Phys. B, 311, 46–78 (1988).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. L. Chekhov and V. V. Fock, Theor. Math. Phys., 120, 1245–1259 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  41. L. O. Chekhov and V. V. Fock, Czech. J. Phys., 50, 1201–1208 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. E. Witten, “Three-dimensional gravity revisited,” arXiv:0706.3359v1 [hep-th] (2007).

    Google Scholar 

  43. N. Seiberg and E. Witten, “Gauge dynamics and compactification to three dimensions,” in: The Mathematical Beauty of Physics (Adv. Ser. Math. Phys., Vol. 24, J. M. Drouffe and J. B. Zuber, eds.), World Scientific, Singapore (1997), pp. 333–366; arXiv:hep-th/9607163v1 (1996).

    Google Scholar 

  44. N. J. Hitchin, Proc. London Math. Soc. (3), 55, 59–126 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Kapustin and E. Witten, Commun. Number Theory Phys., 1, 1–236 (2007); arXiv:hep-th/0604151v3 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  46. N. Hitchin, Duke Math. J., 54, 91–114 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  47. R. Donagi, “Spectral covers,” in: Current Topics in Complex Algebraic Geometry (MSRI Publ., Vol. 28, H. Clemens and J. Kollár, eds.), Cambridge Univ. Press, Cambridge (1995), pp. 65–86; arXiv:alg-geom/9505009v1 (1995).

    Google Scholar 

  48. N. Nekrasov and E. Witten, JHEP, 1009, 092 (2010); arXiv:1002.0888v2 [hep-th] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  49. D. Gaiotto and E. Witten, Adv. Theoret. Math. Phys., 13, 721–896; arXiv:0807.3720v1 [hep-th] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Gaiotto and E. Witten, “Supersymmetric boundary conditions in N=4 super Yang-Mills theory,” arXiv:0804.2902v2 [hep-th] (2008).

    Google Scholar 

  51. A. Beilinson and V. Drinfeld, “Quantization of Hitchin’s integrable system and Hecke eigensheaves,” unpublished.

  52. S. Gukov and E. Witten, “Branes and quantization,” arXiv:0809.0305v2 [hep-th] (2008).

    Google Scholar 

  53. L. F. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. J. Teschner, Adv. Theor. Math. Phys., 15, 471–564 (2011); arXiv:1005.2846v2 [hep-th] (2010).

    Article  MATH  MathSciNet  Google Scholar 

  55. P. G. Zograf and L. A. Takhtadzhyan, Math. USSR-Sb., 60, 143–161 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  56. V. Fock and A. Goncharov, Publ. Math. Inst. Hautes Études Sci., 103, 1–211 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  57. N. Nekrasov, Commun. Math. Phys., 180, 587–603 (1996); arXiv:hep-th/9503157v4 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. R. Donagi and E. Markman, “Spectral covers, algebraically completely integrable hamiltonian systems, and moduli of bundles,” in: Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.) (1996), pp. 1–119; arXiv:alg-geom/9507017v2 (1995).

    Chapter  Google Scholar 

  59. A. Kapustin and S. Sethi, Adv. Theor. Math. Phys., 2, 571–591 (1998); arXiv:hep-th/9804027v2 (1998).

    MATH  MathSciNet  Google Scholar 

  60. E. Markman, Compositio Math., 93, 255–290 (1994).

    MATH  MathSciNet  Google Scholar 

  61. A. Gorsky, N. Nekrasov, and V. Rubtsov, Commun. Math. Phys., 222, 299–318 (2001); arXiv:hep-th/9901089v3 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. V. V. Fock and A. A. Rosly, “Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix [in Russian],” Preprint ITEP-72-92, Inst. Theor. Exp. Phys., Moscow (1992); English transl., AMS Transl. Ser. 2, 191, 67–86 (1999); arXiv:math/9802054v2 (1998).

    Google Scholar 

  63. V. V. Fock and A. A. Roslyi, Theor. Math. Phys., 95, 526–534 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  64. V. V. Fock and A. A. Rosly, Internat. J. Mod. Phys. B, 11, 3195–3206 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. W. M. Goldman, Adv. Math., 54, 200–225 (1984).

    Article  MATH  Google Scholar 

  66. W. M. Goldman, Invent. Math., 85, 263–302 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. V. G. Turaev, Ann. Sci. École Norm. Sup. (4), 24, 635–704 (1991).

    MATH  MathSciNet  Google Scholar 

  68. A. N. Tyurin, Quantization, Classical and Quantum Field Theory, and Theta Functions (CRM Monogr. Ser., Vol. 21), Amer. Math. Soc., Providence, R. I. (2003).

    MATH  Google Scholar 

  69. D. A. Derevnin and A. D. Mednykh, Russ. Math. Surveys, 60, 346–348 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. L. Schläfli, Theorie der vielfachen Kontinuität (Gesammelte Mathematishe Abhandlungen, Vol. 1), Birkhäuser, Basel (1950).

    Google Scholar 

  71. N. I. Lobatschefskij, “Imaginäre Geometrie und ihre Anwendung auf einige Integrale,” in: Deutsche Übersetzung von H. Liebmann, Teubner, Leipzig (1904).

    Google Scholar 

  72. Yu. Cho and H. Kim, Discrete Comput. Geom., 22, 347–366 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  73. J. Milnor, “The Schläfli differential equality,” in: Collected Papers, Vol. 1, Geometry, Publish or Perish, Houston, Tex. (1994), pp. 281–295.

    Google Scholar 

  74. M. Kapovich, J. J. Millson, and T. Treloar, “The symplectic geometry of polygons in hyperbolic 3-space,” arXiv:math/9907143v2 (1999).

    Google Scholar 

  75. A. A. Klyachko, “Spatial polygons and stable configurations of points in the projective line,” in: Algebraic Geometry and Its Applications (Asp. Math., Vol. 25), Vieweg, Braunschweig (1994), pp. 67–84.

    Chapter  Google Scholar 

  76. P. Foth, J. Geom. Phys., 58, 825–832 (2007); arXiv:math/0703525v2 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  77. A. Beilinson and V. Drinfeld, “Opers,” arXiv:math.AG/0501398v1 (2005).

    Google Scholar 

  78. A. Bilal, I. Kogan, and V. Fock, “On the origin of W-algebras,” Preprint CERN-TH.5965/90, CERN, Geneva (1990).

    Google Scholar 

  79. A. Gerasimov, A. Levin, and A. Marshakov, Nucl. Phys. B, 360, 537–558 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  80. N. Nekrasov and V. Pestun, “Seiberg-Witten geometry of four dimensional N=2 quiver gauge theories,” arXiv:1211.2240v1 [hep-th] (2012).

    Google Scholar 

  81. E. Sklyanin, J. Sov. Math., 47, 2473–2488 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  82. E. Frenkel, “Affine algebras, langlands duality, and Bethe ansatz,” in: XIth International Congress on Mathematical Physics (D. Iagolnitzer, ed.), International Press, Cambridge, Mass. (1995), pp. 606–642; arXiv:q-alg/9506003v3 (1995).

    Google Scholar 

  83. A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. L. Shatashvili, Internat. J. Mod. Phys. A, 5, 2495–2589 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  84. V. Schechtman and A. Varchenko, “Integral representations of N-point conformal correlators in the WZW model,” Preprint MPI/89-51, Max-Planck Institut, Bonn (1989).

    Google Scholar 

  85. B. Feigin, E. Frenkel, and N. Reshetikhin, Commun. Math. Phys., 166, 27–62 (1994); arXiv:hep-th/9402022v2 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. N. Reshetikhin and A. Varchenko, “Quasiclassical asymptotics of solutions to the KZ equations,” in: Geometry, Topology, and Physics for Raoul Bott (Conf. Proc. Lect. Notes Geom. Topol., Vol. 4, S.-T. Yau, ed.), International Press, Cambridge, Mass. (1995), pp. 293–322; arXiv:hep-th/9402126v3 (1994).

    Google Scholar 

  87. G. Felder and A. Varchenko, Compositio Math., 107, 143–175 (1997); arXiv:hep-th/9511120v1 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  88. A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B, 477, No. 2, 577–605 (1996); arXiv:hep-th/9506136v2 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  89. E. Aldrovandi and L. A. Takhtajan, Commun. Math. Phys., 227, 303–348 (2002); arXiv:math/0006147v1 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  90. L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, JHEP, 1001, 113 (2010); arXiv:0909.0945v3 [hep-th] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  91. D. Gaiotto, “Asymptotically free N=2 theories and irregular conformal blocks,” arXiv:0908.0307v1 [hep-th] (2009).

    Google Scholar 

  92. E. Witten, Anal. Appl. (Singapore), 6, 429–501 (2008); arXiv:0710.0631v1 [hep-th] (2007).

    Article  MATH  MathSciNet  Google Scholar 

  93. B. Feigin, E. Frenkel, and V. Toledano-Laredo, Adv. Math., 223, 873–948 (2010); arXiv:math/0612798v3 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Nekrasov.

Additional information

Dedicated to L. D. Faddeev on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, N.A., Rosly, A.A. & Shatashvili, S.L. Darboux coordinates, Yang-Yang functional, and gauge theory. Theor Math Phys 181, 1206–1234 (2014). https://doi.org/10.1007/s11232-014-0209-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0209-3

Keywords

Navigation