Skip to main content
Log in

Higgs Bundles, Gauge Theories and Quantum Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The appearance of the Bethe Ansatz equation for the Nonlinear Schrödinger equation in the equivariant integration over the moduli space of Higgs bundles is revisited. We argue that the wave functions of the corresponding two-dimensional topological U(N) gauge theory reproduce quantum wave functions of the Nonlinear Schrödinger equation in the N-particle sector. This implies the full equivalence between the above gauge theory and the N-particle sub-sector of the quantum theory of the Nonlinear Schrödinger equation. This also implies the explicit correspondence between the gauge theory and the representation theory of the degenerate double affine Hecke algebra. We propose a similar construction based on the G/G gauged WZW model leading to the representation theory of the double affine Hecke algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore G., Nekrasov N. and Shatashvili S. (2000). Integrating over Higgs Branches. Commun. Math. Phys. 209: 97

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Hitchin N.J. (1987). The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55: 59–126

    Article  MATH  MathSciNet  Google Scholar 

  3. Gaudin M. (1983). La Fonction d’Onde de Bethe. Masson, Paris

    MATH  Google Scholar 

  4. Bogoliubov N., Izergin A. and Korepin V. (1993). Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: The Quantum Inverse Problem Method. 1. Theor. Math. Phys. 40, 688–706 (1980); Teor. Mat. Fiz. 40, 194–220 (1979)

  6. Gerasimov A., Kharchev S., Lebedev D. and Oblezin S. (2005). On a class of representations of the Yangian and moduli space of monopoles. Commun. Math. Phys. 260: 511

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a Class of Representations of Quantum Groups. http://arxiv.org/math/0501473, 2005

  8. Neumann W.D. and Zagier D. (1985). Volumes of hyperbolic 3-manifolds. Topology 24: 307–332

    Article  MATH  MathSciNet  Google Scholar 

  9. Nahm, W.: Conformal field theory, dilogarithms, and three dimensional manifolds. In: Interface between physics and mathematics, Proceedings, Hangzhou 1993, W. Nahm, J.M. Shen, eds., Singapore: World Scientific, 1994

  10. Gliozzi F. and Tateo R. (1996). Thermodynamic Bethe Ansatz and Threefold Triangulations. Int. J. of Mod. Phys. A 11: 4051

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Nahm, W.: Conformal Field Theory and Torsion Elements of the Bloch group. [arXiv:hepth/0404120]. Springer

  12. Migdal, A.: Recursion Equations in Gauge Theories. Zh. Eksp. Teor. Fiz 69, 810 (1975) (Sov. Phys. Jetp. 42, 413 (1975))

  13. Kazakov V. and Kostov I. (1980). Nonlinear Strings in Two-Dimensional U(Infinity) Gauge Theory. Nucl. Phys. B176: 199

    Article  ADS  MathSciNet  Google Scholar 

  14. Kazakov V. (1981). Wilson Loop Average For An Arbitrary Contour In Two-Dimensional U(N) Gauge Theory. Nucl. Phys. B 179: 283

    Article  ADS  MathSciNet  Google Scholar 

  15. Rusakov B. (1990). Loop Averages And Partition Functions In U(N) Gauge Theory On Two-Dimensional Manifolds. Mod. Phys. Lett. A5: 693

    ADS  MathSciNet  Google Scholar 

  16. Witten E. (1991). On quantum gauge theories in two-dimensions. Commun. Math. Phys. 141: 153

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Witten E. (1992). Two-dimensional gauge theories revisited. J. Geom. Phys. 9: 303

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Gawedzki K. and Kupiainen A. (1988). G/H Conformal Field Theory form Gauged WZW Model. Phys. Lett. B 215: 119

    Article  ADS  MathSciNet  Google Scholar 

  19. Spiegelglas M. and Yankielowicz S. (1993). G/G Topological Field Theories By Cosetting G(K). Nucl. Phys. B 393: 301

    Article  ADS  MathSciNet  Google Scholar 

  20. Gerasimov, A.: Localization in GWZW and Verlinde formula. http://arXiv.org/list/hepth/9305090, 1993

  21. Blau M. and Thompson G. (1993). Derivation of the Verlinde formula from Chern-Simons theory and the G/G model. Nucl. Phys. B 408: 345

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Varadarajan, V.S.: Harmonic Analysis on Real Reductive Groups. Lecture Notes in Math. 576. Berlin, Heidelberg, New York: Springer-Verlag, 1977

  23. Zelobenko D.P. and Stern A.I. (1983). Predstavlenija grupp Li. Moskow, Nauka

    Google Scholar 

  24. Lieb E.H. and Liniger W. (1963). Exact analysis of an interacting Bose gas I. The general solution and the ground state. Phys. Rev. (2) 130: 1605

    MATH  MathSciNet  Google Scholar 

  25. Berezin, F.A., Pohil, G.P., Finkelberg, V.M.: Vestnik MGU 1, 1, 21 (1964)

  26. Yang C.N. (1967). Some exact results for the many-body problems in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19: 1312

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Yang C.N. and Yang C.P. (1969). Thermodinamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. 10: 1115

    Article  ADS  Google Scholar 

  28. Kulish P.P., Manakov S.V. and Faddeev L.D. (1976). Comparison of the exact quantum and quasiclassical results for the nonlinear Schrödinger equation. Theor. Math. Phys. 28: 615

    Article  Google Scholar 

  29. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Berlin, Heidelberg, New York: Springer-Verlag, 1980

  30. Faddeev, L.D.: How Algebraic Bethe Ansatz works for integrable model. In: Relativistic gravitation and gravitational radiation, Proceedings of Les Houches School of Physics 1995, Cambridge: Cambridge Univ. Press, 1997

  31. Murakami S. and Wadati M. (1993). Connection between Yangian symmetry and the quantum inverse scattering method. J. Phys. A: Math. Gen. 29: 7903

    Article  ADS  MathSciNet  Google Scholar 

  32. Hikami K. (1998). Notes on the structure of the -function interacting gas. Intertwining operator in the degenerate affine Hecke algebra. J. Phys. A: Math. Gen 31(4): L85

    MATH  MathSciNet  Google Scholar 

  33. Heckman G.J. and Opdam E.M. (1997). Yang’s system of particles and Hecke algebras. Ann. Math. 145: 139

    Article  MATH  MathSciNet  Google Scholar 

  34. Emsiz E., Opdam E.M. and Stokman J.V. (2006). Periodic integrable systems with delta-potentials. Commun. Math. Phys. 269: 191–225

    Article  ADS  MathSciNet  Google Scholar 

  35. Drinfeld V.G. (1986). Degenerate affine Hecke algebras and Yangians. Funct. Anal. Appl. 20: 58

    Article  MathSciNet  Google Scholar 

  36. Lusztig G. (1989). Affine Hecke algebras and their graded version. J. AMS 2(3): 599

    MATH  MathSciNet  Google Scholar 

  37. Dunkl T.C. (1989). Differential-Difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311(1): 167

    Article  MATH  MathSciNet  Google Scholar 

  38. Cherednik I. (1991). A unification of Knizhnik-Zamolodchikov and Dunkle operators via affine Hecke algebras. Invent. Math. J. 106: 411

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Gerasimov A.A. and Shatashvili S.L. (2000). On Exact tachyon Potential in Open String Field Theory. JHEP 0010: 034

    Article  ADS  MathSciNet  Google Scholar 

  40. Macdonald I. (1970). Harmonic Analysis on Semi-simple Groups. Actes, Congès Intern. Math. 2: 331

    Google Scholar 

  41. Macdonald I.G. (1979). Symmetric Functions and Hall Polynomials. Oxford University Press, London

    MATH  Google Scholar 

  42. Heckman G.J. and Schlichtkrull H. (1994). Harmonic Analysis Functions on Symmetric Spaces. Academic Press, London-New York

    MATH  Google Scholar 

  43. Alekseev A.Yu., Faddeev L.D. and Shatashvili S.L. (1988). Quantization of symplectic orbits of compact Lie groups by means of the functional integral. J. Geom. Phys. 5: 391–406

    Article  MATH  MathSciNet  Google Scholar 

  44. Witten E. (1985). Global gravitational anomalies. Commun. Math. Phys. 100: 197–226

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Atiyah M. (1987). The logarithm of the Dedekind η-function. Math. Ann. 278: 335–380

    Article  MATH  MathSciNet  Google Scholar 

  46. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral Asymmetry and Riemannian Geometry. Math. Proc. Camb. Philos. Soc. 77, 43 (1975), 78, 403 (1975), 79, 71 (1976)

  47. Lusztig G. (1985). Equivariant K-theory and Representations of Hecke Algebras. Proc. Am. Math. Soc. 94: 337

    Article  MATH  MathSciNet  Google Scholar 

  48. Kazhdan D. and Lusztig G. (1987). Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math. 87: 153

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Ginzburg V. and Chriss N. (1997). Representation theory and complex geometry. Birkhauser, Boston

    MATH  Google Scholar 

  50. Ginzburg, V.: Geometric methods in representation theory of Hecke algebras and quantum groups. Notes by Vladimir Baranovsky. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Dordrecht: Kluwer Acad. Publ., 1998, p. 14

  51. Kalkman J. (1993). BRST Model for Equivariant Cohomology and Representative for Equivariant Thom Class. Commun. Math. Phys. 153: 477

    Article  ADS  MathSciNet  Google Scholar 

  52. Freed, D., Hopkins, M., Teleman, C.: Twisted K-theory and loop group representations. http://arXiv.org.list/math/0312155, 2003

  53. Crnkovic, C., Witten, E.: Covariant description of canonical formalism in geometric theories. Newton’s tercentenary volume, edit. S. Hawking, W. Israel, Cambridge: Cambridge University Press, 1987

  54. Narashimhan M.S. and Seshadri C.S. (1965). Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. (2) 82: 540

    Article  Google Scholar 

  55. Ramanathan M.S. (1975). Stable bundles on a compact Riemann surface. Math. Ann. 213: 129

    Article  MATH  MathSciNet  Google Scholar 

  56. Nahm, W.: The construction of all self-dual multimonopoles by the ADHM method. In: Monopoles in quantum field theory, eds. N. Craigie, Singapore: World Scientific, 1982

  57. Nahm, W.: Self-dual monopoles and calorons. Lect. Notes in Physics. 201, eds. G. Denardo, Berlin, Heidelberg, New York: Springer, 1984 p. 189

  58. Atiyah M.F. (1988). Topological quantum field theory. Publications Mathmatiques de l’IHÉS 68: 175–186

    MATH  MathSciNet  Google Scholar 

  59. Gorsky A. and Nekrasov N. (1994). Hamiltonian systems of Calogero type and two dimensional Yang-Mills theory. Nucl. Phys. B 414: 213–238

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Gross D.J. and Taylor W. (1993). Two Dimensional QCD is a String Theory. Nucl.Phys. B400: 181–210

    Article  ADS  MathSciNet  Google Scholar 

  61. Cordes S., Moore G. and Ramgoolam S. (1997). Large N 2D Yang-Mills Theory and Topological String Theory. Commun. Math. Phys. 185: 543–619

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. Cordes S., Moore G. and Ramgoolam S. (1995). Lectures on 2D Yang-Mills Theory, Equivariant Cohomology and Topological Field Theories. Nucl. Phys. Proc. Suppl. 41: 184–244

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. Aganagic M., Ooguri H., Saulina N. and Vafa C. (2005). Black Holes, q-Deformed 2d Yang-Mills, Non-perturbative Topological Strings. Nucl. Phys. B 715: 304–348

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. Smirnov, F.: Quasi-classical Study of Form Factors in Finite Volume. http://arXiv.org/list/hepth/9802132, 1998

  65. Atiyah, M., Bielawski, R.: Nahm’s equations, configuration spaces and flag manifolds. http://arXiv.org/list/math/0110112, 2001

  66. Bump D. (1998). Automorphic Forms and Representations. Cambridge Univ. Press, Cambridge

    Google Scholar 

  67. An Introduction to the Langlands Program. ed. J. Bernstein, S. Gelbart, Basel-Boston: Birkhauser, 2003

  68. Kapustin, A., Witten, E.: Electric-Magnetic Duality And The Geometric Langlands Program. http://arXiv.org/list/hepth/0604151, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samson L. Shatashvili.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, A.A., Shatashvili, S.L. Higgs Bundles, Gauge Theories and Quantum Groups. Commun. Math. Phys. 277, 323–367 (2008). https://doi.org/10.1007/s00220-007-0369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0369-1

Keywords

Navigation