Skip to main content
Log in

A Survey on the Non Occurence of the Lavrentiev Gap for Convex, Autonomous Multiple Integral Scalar Variational Problems

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

In a recent paper we proved the non occurrence of the Lavrentiev gap between Lipschitz and Sobolev functions for functionals of the form

$$\text {I}(u)={\int }_{\Omega }F(u,\nabla u) u|_{\partial {\Omega }} = \phi $$

when \(\phi :\mathbb {R}^{n} \rightarrow \mathbb {R}\) is Lipschitz, Ω belongs to a wide class of open bounded sets in \(\mathbb {R}^{n}\) containing Lipschitz domains, and the lagrangian F is assumed to be either convex in both variables or a sum of functions F(s, ξ) = a(s)g(ξ) + b(s) with g convex and sa(s)g(0) + b(s) satisfying a non oscillatory condition at infinity. In this survey we discuss the state of the art on the subject and give a self-contained proof of our result in the simpler case of a (strongly) star-shaped domain, for a lagrangian depending just on the gradient; in particular we point out what are the main difficulties to overcome in order to get the result without assuming growth conditions. We also formulate, and prove, a characterization of a useful class of star-shaped domains in terms of the radii function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Serra Cassano, F.: Non-occurrence of gap for one-dimensional autonomous functionals 18, 1–17 (1994)

  2. Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Ration. Mech. Anal. 90(4), 325–388 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonfanti, G., Cellina, A.: The non-occurrence of the Lavrentiev phenomenon for a class of variational functionals. SIAM J. Control Optim. 51, 1639–1650 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonfanti, G., Cellina, A.: On the non-occurrence of the Lavrentiev phenomenon. Adv. Calc. Var. 6, 93–121 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bousquet, P., Mariconda, C., Treu, G.: On the Lavrentiev phenomenon for multiple integral scalar variational problems. J. Funct. Anal. 266(9), 5921–5954 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buttazzo, G., Belloni, M.: A survey on old and recent results about the gap phenomenon in the calculus of variations 331, 1–27 (1995)

  7. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional variational problems, Oxford Lecture Series in Mathematics and its Applications, Vol. 15. The Clarendon Press Oxford University Press, New York (1998). An introduction

    Google Scholar 

  8. Cellina, A.: On the bounded slope condition and the validity of the Euler Lagrange equation. SIAM J. Control Optim. 40(4), 1270–1279 (electronic) (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chiadò Piat, V., Serra Cassano, F.: Relaxation of degenerate variational integrals. Nonlinear Anal. 22(4), 409–424 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clarke, F.H., Vinter, R.B.: Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Amer. Math. Soc. 289(1), 73–98 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ekeland, I., Témam, R.: Convex analysis and variational problems, English, Classics in Applied Mathematics, vol. 28, Society for Industrial and Applied Mathematics (SIAM), Translated from the French (1999)

  12. Lavrentiev, M.A.: Sur quelques problèmes du calcul des variations. Ann. Mat. Pura Appl. 4(2), 9–28 (1927)

    Google Scholar 

  13. Manià, B.: Sopra un esempio di Lavrentiev. Boll. Un. math. Ital. 13(4), 146–153 (1934)

    Google Scholar 

  14. Mariconda, C., Treu, G.: A comparison principle and the Lipschitz continuity for minimizers. J. Convex Anal. 12(1), 197-212 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Percivale, D.: Nonoccurence of the lavrentiev phenomenon for a class of non coercive integral functionals, Preprint of the Dipartimento di Matematica, Universit‘a di Genova (1994)

  16. Rubinov, A.: Abstract convexity and global optimization, Nonconvex Optimization and its Applications, Vol. 44. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  17. Zaslavski, A.: Nonoccurrence of the Lavrentiev phenomenon for many nonconvex constrained variational problems. Calc. Var. Partial Diff. Equat. 28(2), 351–381 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russian J. Math. Phys. 3(2), 249–269 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Mariconda.

Additional information

SI on Recent Advances in Optimal Control and Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousquet, P., Mariconda, C. & Treu, G. A Survey on the Non Occurence of the Lavrentiev Gap for Convex, Autonomous Multiple Integral Scalar Variational Problems. Set-Valued Var. Anal 23, 55–68 (2015). https://doi.org/10.1007/s11228-014-0305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-014-0305-4

Keywords

Mathematics Subject Classification (2010)

Navigation