Skip to main content
Log in

Stability and agent dynamics of artificial electric field algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Artificial Electric Field Algorithm (AEFA) is a recently developed optimization algorithm inspired by the principles of electrostatic force and the law of motion. It operates as a stochastic population-based algorithm and utilizes probabilistic techniques to search for solutions. Due to its stochastic nature, it is crucial to investigate the numerical stability of AEFA. Such a study helps in determining optimal parameter values for the AEFA scheme. In this article, we analyse the stability of AEFA using two different criteria: Von Neumann stability and agent dynamics. Both methods provide sufficient conditions for the stability of AEFA, enabling the adaptation of its parameters. We further examine the trajectory behaviour of agents by evaluating various benchmark functions from the CEC 2021 test suite. Through illustrative examples, we demonstrate the theoretical and experimental studies, highlighting the stable nature of AEFA and validating the proposed stability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol 4, IEEE, pp 1942–1948

  2. Rashedi E, Rashedi E, Nezamabadi-pour H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evolut Comput 41:141–158

    Article  Google Scholar 

  3. Chauhan D, Yadav A (2023) Optimizing the parameters of hybrid active power filters through a comprehensive and dynamic multi-swarm gravitational search algorithm. Eng Appl Artif Intell 123:106469

    Article  Google Scholar 

  4. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  5. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  6. Mirjalili S (2019) Genetic algorithm. In: Evolutionary algorithms and neural networks, Springer, Berlin, pp 43–55

  7. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. simulation 76(2):60–68

    Article  Google Scholar 

  8. Tayarani NMH, Akbarzadeh TMR (2008) Magnetic optimization algorithms a new synthesis. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), IEEE, pp 2659–2664

  9. Qin A, Huang VL, Suganthan PN (2008) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  10. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  11. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6):317–325

    Article  MathSciNet  Google Scholar 

  12. van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937–971

    Article  MathSciNet  Google Scholar 

  13. Tian DP (2013) A review of convergence analysis of particle swarm optimization. Int J Grid Distrib Comput 6(6):117–128

    Article  Google Scholar 

  14. Bonyadi MR, Michalewicz Z (2015) Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans Evol Comput 20(5):814–819

    Article  Google Scholar 

  15. Jiang M, Luo YP, Yang SY (2007) Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf Process Lett 102(1):8–16

    Article  MathSciNet  Google Scholar 

  16. Kadirkamanathan V, Selvarajah K, Fleming PJ (2006) Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput 10(3):245–255

    Article  Google Scholar 

  17. Farivar F, Shoorehdeli MA (2016) Stability analysis of particle dynamics in gravitational search optimization algorithm. Inf Sci 337:25–43

    Article  Google Scholar 

  18. Shirjini MF, Nikanjam A, Shoorehdeli MA (2021) Stability analysis of the particle dynamics in bat algorithm: standard and modified versions. Eng Comput 37:2865–2876

    Article  Google Scholar 

  19. Dasgupta S, Das S, Biswas A, Abraham A (2009) On stability and convergence of the population-dynamics in differential evolution. AI Commun 22(1):1–20

    Article  MathSciNet  Google Scholar 

  20. Gopal A, Sultani MM, Bansal JC (2020) On stability analysis of particle swarm optimization algorithm. Arab J Sci Eng 45(4):2385–2394

    Article  Google Scholar 

  21. Bansal JC, Gopal A, Nagar AK (2018) Stability analysis of artificial bee colony optimization algorithm. Swarm Evol Comput 41:9–19

    Article  Google Scholar 

  22. Gopal A, Bansal JC (2016) Stability analysis of differential evolution. In: 2016 International Workshop on Computational Intelligence (IWCI), IEEE, pp 221–223

  23. Jiang S, Wang Y, Ji Z (2014) Convergence analysis and performance of an improved gravitational search algorithm. Appl Soft Comput 24:363–384

    Article  Google Scholar 

  24. Chakraborty P, Das S, Roy GG, Abraham A (2011) On the convergence of the multi-objective particle swarm optimizers. Inf Sci 181(8):1411–1425

    Article  MathSciNet  Google Scholar 

  25. Souna F, Djilali S, Lakmeche A (2021) Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear effect. Eur Phys J Plus 136(5):474

    Article  Google Scholar 

  26. Djilali S (2020) Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math Methods Appl Sci 43(5):2233–2250

    Article  MathSciNet  Google Scholar 

  27. Djilali S, Bentout S (2021) Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior. Math Methods Appl Sci 44(11):9128–9142

    Article  MathSciNet  Google Scholar 

  28. Guin LN, Pal S, Chakravarty S, Djilali S (2021) Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting. Int J Biomath 14(01):2050084

    Article  MathSciNet  Google Scholar 

  29. Mezouaghi A, Djilali S, Bentout S, Biroud K (2022) Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting. Math Methods Appl Sci 45(2):718–731

    Article  MathSciNet  Google Scholar 

  30. Yadav A (2019) Aefa: Artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108

    Article  Google Scholar 

  31. Sajwan A, Yadav A (2022) A study of exploratory and stability analysis of artificial electric field algorithm. Appl Intell 52(9):10805–10828

    Article  Google Scholar 

  32. Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite-difference methods. J Comput Phys 14(2):159–179

    Article  MathSciNet  Google Scholar 

  33. Burrage K (1993) Parallel methods for initial value problems. Appl Numer Math 11(1–3):5–25

    Article  MathSciNet  Google Scholar 

  34. Richtmyer RD, Morton KW (1994) Difference methods for initial-value problems. Malabar

  35. Thomas JW (2013) Numerical partial differential equations: finite difference methods. Springer Science & Business Media, Berlin

    Google Scholar 

  36. Vidyasagar M(2002) Nonlinear systems analysis. SIAM

  37. Gazi V (2012) Stochastic stability analysis of the particle dynamics in the PSO algorithm. In: 2012 IEEE International Symposium on Intelligent Control, IEEE, pp 708–713.

  38. Sridhar S, Khalil Hassan K (2000) Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 11(1):69–79

    Article  Google Scholar 

  39. Rugh WJ (1996) Linear system theory. Prentice-Hall, Inc

  40. Stefani RT, Bahram S, Savant Clement J, Hostetter Gene H (2002) Design of feedback control systems. Oxford University Press, Oxford

    Google Scholar 

  41. Byrnes CI, Lin W (1993) Discrete-time lossless systems, feedback equivalence and passivity. In: Proceedings of 32nd IEEE Conference on Decision and Control, IEEE, pp 1775–1781

  42. Bergh Frans Van D (2007) An analysis of particle swarm optimizers. PhD thesis, University of Pretoria

  43. Mohamed AW, Hadi Anas A, Mohamed Ali K, Agrawal P, Kumar A, Suganthan PN, Problem definitions and evaluation criteria for the CEC, (2021) Special session and competition on single objective bound constrained numerical optimization. Tech Rep, p 2020

  44. Jiaju Y, Shuanghe Y, Li J, Yan Y (2019) Fixed-time stability theorem of stochastic nonlinear systems. Int J Control 92(9):2194–2200

    Article  MathSciNet  Google Scholar 

  45. Jiaju Y, Shuanghe Y, Yan Y (2021) Fixed-time stability of stochastic nonlinear systems and its application into stochastic multi-agent systems. IET Control Theory Appl 15(1):126–135

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. B. R. Ambedkar National Institute of Technology Jalandhar for the necessary support to this research. The first author is thankful to the Ministry of Education, Govt. of India for providing financial support to carry out this work. The authors are also thankful to Science Education Research Board (SERB), Govt. of India for the financial support under MATRICS scheme with grant number MTR/2021/000503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Yadav.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, D., Yadav, A. Stability and agent dynamics of artificial electric field algorithm. J Supercomput 80, 835–864 (2024). https://doi.org/10.1007/s11227-023-05502-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05502-x

Keywords

Navigation