Skip to main content
Log in

A score identification parallel system based on audio-to-score alignment

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper presents a parallel system for searching a digital score of classical music in a personal library. The application scenario of the system is for a musician who wants to search for a specific score in its own device by playing an excerpt of a few seconds of the composition. We propose a solution, based on audio-to-score alignment, which allows to identify the correct score in a database of musical pieces in real time. This is a challenging task because we focus on a real-time system targeted for handheld devices characterized by both mobility and low power consumption. Experimental results show that it is possible to achieve real-time execution in the tested scenarios using parallel computing techniques with ARM processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://beatik.com.

  2. https://www.antescofo.com.

  3. https://tonara.com.

  4. https://newzik.com.

  5. https://www.shazam.com.

  6. https://gitlab.com/SSPressing/ReMAS.

  7. https://gitlab.com/SSPressing/shizmidi.

References

  1. Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-González M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73(1):126–138. https://doi.org/10.1007/s11227-016-1647-5

    Article  Google Scholar 

  2. Alonso P, Vera-Candeas P, Cortina R, Ranilla J (2017) An efficient musical accompaniment parallel system for mobile devices. J Supercomput 73(1):343–353. https://doi.org/10.1007/s11227-016-1865-x

    Article  Google Scholar 

  3. Arzt A (2016) Flexible and robust music tracking. Ph.D. thesis, Johannes Kepler University Linz

  4. Carabias-Orti JJ, Cobos M, Vera-Candeas P, Rodríguez-Serrano FJ (2013) Nonnegative signal factorization with learnt instrument models for sound source separation in close-microphone recordings. EURASIP J Adv Signal Process 1:184. https://doi.org/10.1186/1687-6180-2013-184

    Article  Google Scholar 

  5. Carabias-Orti J.J, Rodriguez-Serrano F, Vera-Candeas P, Ruiz-Reyes N, Canadas-Quesada F.J (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: ISMIR: Proceedings of the International Conference of Music Information Retrieval, pp 742–748

  6. Cichocki A, Amari SI (2010) Families of alpha- beta- and gamma- divergences: flexible and robust measures of Similarities. Entropy. https://doi.org/10.3390/e12061532

  7. Cont A (2006) Realtime audio to score alignment for polyphonic music instruments, using sparse non-negative constraints and hierarchical HMMS. In: Proceedings of 2006 IEEE International Conference on Acoustics Speed and Signal Processing, vol 5. IEEE, pp V–245–V–248. https://doi.org/10.1109/ICASSP.2006.1661258

  8. Dixon S (2005) Live tracking of musical performances using on-line time warping. In: DAFx, pp. 1727–1728

  9. Ewert S, Muller M, Grosche P (2009) High resolution audio synchronization using chroma onset features. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp 1869–1872. https://doi.org/10.1109/ICASSP.2009.4959972

  10. Févotte C, Idier J (2011) Algorithms for nonnegative matrix factorization with the \(\beta\)-divergence. Neural Comput 23(9):2421–2456

    Article  MathSciNet  Google Scholar 

  11. Hu N, Dannenberg R.B, Tzanetakis G (2003) Polyphonic audio matching and alignment for music retrieval. In: IEEE workshop on applications of signal processing to audio and acoustics, vol 2003-Janua. IEEE, pp 185–188. https://doi.org/10.1109/ASPAA.2003.1285862

  12. Kaprykowsky H, Rodet X (2006) Globally optimal short-time dynamic time warping, application to score to audio alignment. In: Proceedings of 2006 IEEE International Conference on Acoustics Speed and Signal Processing, vol 5. IEEE, pp V–249–V–252. https://doi.org/10.1109/ICASSP.2006.1661259

  13. Kurth F, Muller M (2008) Efficient index-based audio matching. IEEE Trans Audio Speech Lang Process 16(2):382–395. https://doi.org/10.1109/TASL.2007.911552

    Article  Google Scholar 

  14. Munoz-Montoro AJ, Carabias-Orti JJ, Vera-Candeas P, Canadas-Quesada FJ (2019) Online/offline score informed music signal decomposition: application to minus one. Eurasip J Audio Speech Music Process 1:23. https://doi.org/10.1186/s13636-019-0168-6

    Article  Google Scholar 

  15. Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proceedings of the International Computer Music Conference, pp 155–158

  16. Otsuka T, Takahashi T, Okuno H.G, Komatani K, Ogata T, Murata K, Nakadai K (2009) Incremental polyphonic audio to score alignment using beat tracking for singer robots. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp 2289–2296. https://doi.org/10.1109/IROS.2009.5354637

  17. Raffel C, Ellis DPW (2015) Large-scale content-based matching of midi and audio files. In: Proceedings of the International Society for Music Information Retrieval Conference

  18. Raffel C, Ellis DPW (2016) Extracting ground truth information from MIDI files: A Midifesto. In: Proceedings of 17th International Society for Music Information Retrieval Conference, pp 796–802

  19. Raphael C (2010) Music plus one and machine learning. In: Proceedings of the 27th International Conference on Machine Learning, pp 21–28

  20. Rodríguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Canadas-Quesada FJ, Ruiz-Reyes N (2014) Monophonic constrained non-negative sparse coding using instrument models for audio separation and transcription of monophonic source-based polyphonic mixtures. Multimed Tools Appl 72(1):925–949. https://doi.org/10.1007/s11042-013-1398-8

    Article  Google Scholar 

  21. Rodriguez-Serrano FJ, Duan Z, Vera-Candeas P, Pardo B, Carabias-Orti JJ (2015) Online score-informed source separation with adaptive instrument models. J New Music Res 44(2):83–96. https://doi.org/10.1080/09298215.2014.989174

    Article  Google Scholar 

  22. Thickstun J, Harchaoui Z, Kakade S (2017) Learning features of music from scratch. In: ICLR, pp 1–14

  23. Turetsky R, Ellis D (2003) Ground-truth transcriptions of real music from force-aligned MIDI syntheses. In: Proceedings of the 4th international symposium on music information retrieval, pp 135–141. https://doi.org/10.7916/D8S472CZ

  24. Wang ALC (2003) An industrial strength audio search algorithm. In: Proceedings of the 4th International Society for Music Information Retrieval Conference (ISMIR 203), Baltimore, Maryland (USA), 26–30 October 2003, pp 7–13. https://doi.org/10.1109/IITAW.2009.110

Download references

Acknowledgements

This work has been supported by the Regional Ministry of the Principado de Asturias under grants FC-GRUPIN-IDI/2018/000226 and the University of Jaén under the program “Acción 1. Apoyo a las estructuras de investigación de la Universidad de Jaén para incrementar su competitividad atendiendo a sus singularidades.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Muñoz-Montoro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Montoro, A.J., Cortina, R., García-Galán, S. et al. A score identification parallel system based on audio-to-score alignment. J Supercomput 76, 8830–8844 (2020). https://doi.org/10.1007/s11227-020-03185-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03185-2

Keywords

Navigation