Skip to main content
Log in

Effects of graphene and thermoplastic elastomer on tailoring the bulk properties of asphaltenes: an exploration from classical and quantum simulations

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The modulation of bulk properties including the cohesive strength and the solubility of the asphaltenes, due to the inclusion of graphene nanosheets and the thermoplastic polymer, is probed by performing all-atom classical molecular dynamics (MD) simulations. The impact of morphological heterogeneity, including the size of the aromatic core of the asphaltene molecule, the nature of the heteroatom attached to the aromatic core, the orientation of the graphene nanosheets, and the surface area of the nanomaterial, on the bulk properties of the model systems of nanocomposites and interfaces is explored. The cohesive strength of the asphaltene composites is significantly enhanced by the introduction of graphene nanosheets. The addition of styrene–butadiene–styrene (SBS) block copolymer into the graphene-reinforced asphaltene systems improves the cohesive strength, structural plasticity, and compatibility between the nanomaterial and the asphaltenes. The ππ stacking interaction between the graphitic surface and the aromatic core of the asphaltene is identified to be the major driving force for modulating the cohesive strength. The dispersion interaction maximizes in the hierarchical layered structure compared to the randomly oriented structure of the graphene nanosheets and the asphaltene molecules. The energetics of non-covalent interaction are further assessed within the framework of dispersion-corrected density functional theory (DFT)-based methods. The DFT-derived adsorption energies and thermochemical properties substantiate the stronger interaction and the thermodynamic favorability of the adsorption processes in both the gas phase and solvent medium (toluene). The simulated IR and Raman spectra are also analyzed to reveal the nature of the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this computational study are available from the corresponding author on reasonable request. 

References

  1. Schuler B, Zhang Y, Liu F, Pomerantz AE, Andrews AB, Gross L, Pauchard V, Banerjee S, Mullins OC (2020) Overview of asphaltene nanostructures and thermodynamic applications. Energy Fuels 34:15082–15105. https://doi.org/10.1021/acs.energyfuels.0c00874

    Article  CAS  Google Scholar 

  2. Groenzin H, Mullins OC (2000) Molecular size and structure of asphaltenes from various sources. Energy Fuels 14:677–684. https://doi.org/10.1021/ef990225z

    Article  CAS  Google Scholar 

  3. McKenna AM, Donald LJ, Fitzsimmons JE, Juyal P, Spicer V, Standing KG, Marshall AG, Rodgers RP (2013) Heavy petroleum composition. 3. Asphaltene Aggregation Energy Fuels 27:1246–1256. https://doi.org/10.1021/ef3018578

    Article  CAS  Google Scholar 

  4. Hoepfner MP, Fávero CVB, Haji-Akbari N, Fogler HS (2013) The fractal aggregation of asphaltenes. Langmuir 29:8799–8808. https://doi.org/10.1021/la401406k

    Article  CAS  PubMed  Google Scholar 

  5. Alshareef AH (2019) Asphaltenes: definition, properties, and reactions of model compounds. Energy Fuels 34:16–30. https://doi.org/10.1021/acs.energyfuels.9b03291

    Article  CAS  Google Scholar 

  6. Tanaka R, Sato E, Hunt JE, Winans RE, Sato S, Takanohashi T (2004) Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering. Energy Fuels 18:1118–1125. https://doi.org/10.1021/ef034082z

    Article  CAS  Google Scholar 

  7. Bouhadda Y, Bormann D, Sheu E, Bendedouch D, Krallafa A, Daaou M (2007) Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel 86:1855–1864. https://doi.org/10.1016/j.fuel.2006.12.006

    Article  CAS  Google Scholar 

  8. Abdallah WA, Yang Y (2012) Raman spectrum of asphaltene. Energy Fuels 26:6888–6896. https://doi.org/10.1021/ef301247n

    Article  CAS  Google Scholar 

  9. Mullins OC (2010) The modified Yen model. Energy Fuels 24:2179–2207. https://doi.org/10.1021/ef900975e

    Article  CAS  Google Scholar 

  10. Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, Ruiz-Morales Y, Mostowfi F, McFarlane RA, Goual L, Lepkowicz R, Cooper TB, Orbulescu J, Leblanc RM, Edwards JE, Zare RN (2012) Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26:3986–4003. https://doi.org/10.1021/ef300185p

    Article  CAS  Google Scholar 

  11. Carauta ANM, Correia JCG, Seidl PR, Silva DM (2005) Conformational search and dimerization study of average structures of asphaltenes. J Mol Struct theochem 75:1–8. https://doi.org/10.1016/j.theochem.2005.02.063

    Article  CAS  Google Scholar 

  12. Mullins OC (2011) The asphaltenes. Annu Rev Anal Chem 4:393–418. https://doi.org/10.1146/annurev-anchem-061010-113849

    Article  CAS  Google Scholar 

  13. Sedghi M, Goual L, Welch WR, Kubelka J (2013) Effect of asphaltene structure on association and aggregation using molecular dynamics. J Phys Chem B 117:5765–5776. https://doi.org/10.1021/jp401584u

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Xu H, Jia W, Liu J, Ren S (2017) Revealing the intermolecular interactions of asphaltene dimers by quantum chemical calculations. Energy Fuels 31:2488–2495. https://doi.org/10.1021/acs.energyfuels.6b02738

    Article  CAS  Google Scholar 

  15. Silva HS, Carolina A, Bouyssiere B, Carrier H, Korb J-P, Alfarra A, Vallverdu GS, Bégué D, Baraille I (2016) Molecular dynamics study of nanoaggregation in asphaltene mixtures: effects of the N, O, and S heteroatoms. Energy Fuels 30:5656–5664. https://doi.org/10.1021/acs.energyfuels.6b01170

    Article  CAS  Google Scholar 

  16. Bian H, Xu F, Kan A, Wei S, Zhang H, Zhang S, Zhu L, Xia D (2021) Insight into the mechanism of asphaltene disaggregation by alkylated treatment: an experimental and theoretical investigation. J Mol Liq 343:117576–117576. https://doi.org/10.1016/j.molliq.2021.117576

    Article  CAS  Google Scholar 

  17. Ekramipooya A, Valadi FM, Farisabadi A, Gholami MR (2021) Effect of the heteroatom presence in different positions of the model asphaltene structure on the self-aggregation: MD and DFT study. J Mol Liq 334:116109–116109. https://doi.org/10.1016/j.molliq.2021.116109

    Article  CAS  Google Scholar 

  18. Silva HS, Alfarra A, Vallverdu G, Bégué D, Bouyssiere B, Baraille I (2017) Sensitivity of asphaltene aggregation toward the molecular architecture under desalting thermodynamic conditions. Energy Fuels 32:2681–2692. https://doi.org/10.1021/acs.energyfuels.7b02728

    Article  CAS  Google Scholar 

  19. Carolina A, Silva H, Level PG, Bouyssiere B, Korb J-P, Carrier H, Alfarra A, Bégué D, Baraille I (2016) Investigation of the effect of sulfur heteroatom on asphaltene aggregation. Energy Fuels 30:4758–4766. https://doi.org/10.1021/acs.energyfuels.6b00757

    Article  CAS  Google Scholar 

  20. Pacheco-Sánchez JH, Zaragoza IP, Martínez-Magadán JM (2003) Asphaltene aggregation under vacuum at different temperatures by molecular dynamics. Energy Fuels 17:1346–1355. https://doi.org/10.1021/ef020226i

    Article  CAS  Google Scholar 

  21. Rogel E (2000) Simulation of interactions in asphaltene aggregates. Energy Fuels 14:566–574. https://doi.org/10.1021/ef990166p

    Article  CAS  Google Scholar 

  22. He L, Wang P, He L, Zhou Q, Luo J, Peng B, Tang X, Pei Y (2018) Molecular dynamics simulations of the self-organization of side-chain decorated polyaromatic conjugation molecules: phase separated lamellar and columnar structures and dispersion behaviors in toluene solvent. RSC Adv 8:11134–11144. https://doi.org/10.1039/c7ra13101a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jian C, Tang T, Bhattacharjee S (2013) Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy Fuels 27:2057–2067. https://doi.org/10.1021/ef400097h

    Article  CAS  Google Scholar 

  24. Martín-Martínez FJ, Fini EH, Buehler MJ (2015) Molecular asphaltene models based on Clar sextet theory. RSC Adv 5:753–759. https://doi.org/10.1039/c4ra05694a

    Article  Google Scholar 

  25. Li G, Tan Y (2022) The construction and application of asphalt molecular model based on the quantum chemistry calculation. Fuel 308:122037. https://doi.org/10.1016/j.fuel.2021.122037

    Article  CAS  Google Scholar 

  26. Headen TF, Boek ES, Skipper NT (2009) Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy Fuels 23:1220–1229. https://doi.org/10.1021/ef800872g

    Article  CAS  Google Scholar 

  27. Headen TF, Boek ES, Jackson GL, Totton TS, Müller E (2017) Simulation of asphaltene aggregation through molecular dynamics: insights and limitations. Energy Fuels 31:1108–1125. https://doi.org/10.1021/acs.energyfuels.6b02161

    Article  CAS  Google Scholar 

  28. Gray MR, Tykwinski RR, Stryker JM, Tan X (2011) Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuels 25:3125–3134. https://doi.org/10.1021/ef200654p

    Article  CAS  Google Scholar 

  29. Al-Hosani A, Ravichandran S, Daraboina N (2020) Review of asphaltene deposition modeling in oil and gas production. Energy Fuels 35:965–986. https://doi.org/10.1021/acs.energyfuels.0c02981

    Article  CAS  Google Scholar 

  30. Shoushtari AB, Asadolahpour SR, Madani M (2020) Thermodynamic investigation of asphaltene precipitation and deposition profile in wellbore: a case study. J Mol Liq 320:114468. https://doi.org/10.1016/j.molliq.2020.114468

    Article  CAS  Google Scholar 

  31. Ahooei A, Norouzi-Apourvari S, Hemmati-Sarapardeh A, Schaffie M (2020) Experimental study and modeling of asphaltene deposition on metal surfaces via electrodeposition process: the role of ultrasonic radiation, asphaltene concentration and structure. J Pet Sci Eng 195:107734–107734. https://doi.org/10.1016/j.petrol.2020.107734

    Article  CAS  Google Scholar 

  32. Farooq U, Patil A, Panjwani B, Simonsen G (2021) Review on application of nanotechnology for asphaltene adsorption, crude oil demulsification, and produced water treatment. Energy Fuels 35:19191–19210. https://doi.org/10.1021/acs.energyfuels.1c01990

    Article  CAS  Google Scholar 

  33. Rogel E, Moir ME, Hurt M, Miao T, Lee E (2019) Asphaltene and maltene adsorption into graphene. Energy Fuels 33:9538–9545. https://doi.org/10.1021/acs.energyfuels.9b01681

    Article  CAS  Google Scholar 

  34. Hosseini-Dastgerdi Z, Meshkat SS (2019) An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution. J Pet Sci Eng 174:1053–1061. https://doi.org/10.1016/j.petrol.2018.12.024

    Article  CAS  Google Scholar 

  35. Radnia H, Nazar ARS, Rashidi A (2019) Effect of asphaltene on the emulsions stabilized by graphene oxide: a potential application of graphene oxide in enhanced oil recovery. J Pet Sci Eng 175:868–880. https://doi.org/10.1016/j.petrol.2019.01.034

    Article  CAS  Google Scholar 

  36. Meshkat SS, Hosseini-Dastgerdi Z, Pakniya F (2023) Asphaltene removal from model oil solution by N doped graphene in a fixed bed column. J Dispers Sci Technol 1–8. https://doi.org/10.1080/01932691.2023.2179491

  37. Pensini E, Harbottle D, Yang F, Tchoukov P, Li Z, Kailey I, Behles J, Masliyah J, Xu Z (2014) Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide–propylene oxide demulsifier. Energy Fuels 28:6760–6771. https://doi.org/10.1021/ef501387k

    Article  CAS  Google Scholar 

  38. Husain A, Adewunmi AA, Gbadamosi A, Al-Harthi MA, Patil S, Kamal MS (2023) Demulsification of asphaltene stabilized crude oil emulsions by biodegradable ethylcellulose polymers with varying viscosities. Sci Rep 13:1090. https://doi.org/10.1038/s41598-023-27973-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li X, Ma J, Bian R, Cheng J, Sui H, He L (2020) Novel polyether for efficient demulsification of interfacially active asphaltene-stabilized water-in-oil emulsions. Energy Fuels 34:3591–3600. https://doi.org/10.1021/acs.energyfuels.9b03518

    Article  CAS  Google Scholar 

  40. Mao X, Wang F, Lu B, Tang T, Liu Q, Zeng H (2023) Novel polymer nanoparticles with core–shell structure for breaking asphaltenes-stabilized W/O and O/W emulsions. J Colloid Interface Sci 640:296–308. https://doi.org/10.1016/j.jcis.2023.02.080

    Article  CAS  PubMed  Google Scholar 

  41. Feng X, Xu Z, Masliyah J (2008) Biodegradable polymer for demulsification of water-in-bitumen emulsions. Energy Fuels 23:451–456. https://doi.org/10.1021/ef800825n

    Article  CAS  Google Scholar 

  42. Wang FH, Shen LB, Zhu H, Han KF (2011) The preparation of a polyether demulsifier modified by nano-SiO2 and the effect on asphaltenes and resins. Pet Sci Technol 29:2521–2529. https://doi.org/10.1080/10916460903393997

    Article  CAS  Google Scholar 

  43. Li Z, Fuentes JV, Chakraborty A, Zamora EB, Prasad V, Vázquez F, Xu Z, Liu Q, Flores C, McCaffrey WC (2023) Dehydration of water-in-crude oil emulsions using polymeric demulsifiers: a model for water removal based on the viscoelastic properties of the oil–water interfacial film. Fuel 332:126185–126185. https://doi.org/10.1016/j.fuel.2022.126185

    Article  CAS  Google Scholar 

  44. Mosleh FM, Mortazavi Y, Hosseinpour N, Khodadadi AA (2019) Asphaltene adsorption onto carbonaceous nanostructures. Energy Fuels 34:211–224. https://doi.org/10.1021/acs.energyfuels.9b03466

    Article  CAS  Google Scholar 

  45. Lan T, Zeng H, Tang T (2019) Molecular dynamics study on the mechanism of graphene oxide to destabilize oil/water emulsion. J Phys Chem C 123:22989–22999. https://doi.org/10.1021/acs.jpcc.9b05906

    Article  CAS  Google Scholar 

  46. Liang M, Liang P, Fan W, Qian C, Xin X, Shi J, Nan G (2015) Thermo-rheological behavior and compatibility of modified asphalt with various styrene–butadiene structures in SBS copolymers. Mater Des 88:177–185. https://doi.org/10.1016/j.matdes.2015.09.002

    Article  CAS  Google Scholar 

  47. Cai HM, Wang T, Zhang JY, Zhang YZ (2010) Preparation of an SBS latex–modified bitumen emulsion and performance assessment. Pet Sci Technol 28:987–996. https://doi.org/10.1080/10916460902939436

    Article  CAS  Google Scholar 

  48. Abd El-Rahman AMM, El-Shafie M, Abo-Shanab ZL, El-Kholy SA (2017) Modifying asphalt emulsion with different types of polymers for surface treatment applications. Pet Sci Technol 35:1473–1480. https://doi.org/10.1080/10916466.2017.1344709

    Article  CAS  Google Scholar 

  49. Zhang L, Greenfield ML (2007) Molecular orientation in model asphalts using molecular simulation. Energy Fuels 21:1102–1111. https://doi.org/10.1021/ef060449z

    Article  CAS  Google Scholar 

  50. Zhang L, Greenfield ML (2010) Rotational relaxation times of individual compounds within simulations of molecular asphalt models. J Chem Phys 132:184502. https://doi.org/10.1063/1.3416913

    Article  CAS  Google Scholar 

  51. Zhang L, Greenfield ML (2007) Analyzing properties of model asphalts using molecular simulation. Energy Fuels 21:1712–1716. https://doi.org/10.1021/ef060658j

    Article  CAS  Google Scholar 

  52. Bhasin A, Bommavaram R, Greenfield ML, Little DN (2011) Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders. J Mater Civ Eng 23:485–492. https://doi.org/10.1061/(asce)mt.1943-5533.0000200

    Article  CAS  Google Scholar 

  53. Li DD, Greenfield ML (2014) Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 115:347–356. https://doi.org/10.1016/j.fuel.2013.07.012

    Article  CAS  Google Scholar 

  54. Li DD, Greenfield ML (2011) High internal energies of proposed asphaltene structures. Energy Fuels 25:3698–3705. https://doi.org/10.1021/ef200507c

    Article  CAS  Google Scholar 

  55. Lu C, Wu C, Ghoreishi D, Chen W, Wang L, Damm W, Ross GA, Dahlgren MK, Russell E, Von Bargen CD, Abel R, Friesner RA, Harder ED (2021) OPLS4: improving force field accuracy on challenging regimes of chemical space. J Chem Theory Comput 17:4291–4300. https://doi.org/10.1021/acs.jctc.1c00302

    Article  CAS  PubMed  Google Scholar 

  56. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  57. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  58. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697. https://doi.org/10.1103/physreva.31.1695

    Article  CAS  Google Scholar 

  59. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  60. Bowers KJ, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA (2006) Molecular dynamics scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC ’06. https://doi.org/10.1145/1188455.1188544

  61. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  62. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  63. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  64. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  65. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  66. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  67. Barone V, Cossi M, Tomasi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19:404–417. https://doi.org/10.1002/(sici)1096-987x(199803)19:4%3C404::aid-jcc3%3E3.0.co;2-w

    Article  CAS  Google Scholar 

  68. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ, 2016, Gaussian 16 Rev. C.01, Wallingford, CT

  69. Elkahky S, Lagat C, Sarmadivaleh M, Barifcani A (2019) A comparative study of density estimation of asphaltene structures using group contribution methods and molecular dynamic simulations for an Australian oil field. J Pet Explor Prod Technol 9:2699–2708. https://doi.org/10.1007/s13202-019-0641-x

    Article  CAS  Google Scholar 

  70. Hildebrand JH (1936) Solubility of non-electrolytes. Reinhold Publishing Corporation, New York

    Google Scholar 

  71. Hansen CM (1969) The universality of the solubility parameter. Ind Eng Chem Prod Res Dev 8:2–11. https://doi.org/10.1021/i360029a002

    Article  CAS  Google Scholar 

  72. Redelius P (2004) Bitumen solubility model using hansen solubility parameter. Energy Fuels 18:1087–1092. https://doi.org/10.1021/ef0400058

    Article  CAS  Google Scholar 

  73. Zhang L, Greenfield ML (2008) Effects of polymer modification on properties and microstructure of model asphalt systems. Energy Fuels 22:3363–3375. https://doi.org/10.1021/ef700699p

    Article  CAS  Google Scholar 

  74. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  75. Rao KS, Senthilnathan J, Liu Y-F, Yoshimura M (2014) Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci Rep 4:4237. https://doi.org/10.1038/srep04237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work described in this document was conducted in the Center for Computational Chemistry at Jackson State University. The Authors would like to acknowledge the support provided by the US Army Engineer Research and Development Center (ERDC) and the Military Engineering Research and Development Area under contract W912HZ-21C0040. Permission to publish was granted by the ERDC Geotechnical and Structures Laboratory. The authors would like to thank Dr. Glake Hill, Professor of Chemistry, Jackson State University, for providing access to computational facilities, especially the Material Science Suite of the Schrödinger code. The authors acknowledge HPC at The University of Southern Mississippi supported by the National Science Foundation under the Major Research Instrumentation (MRI) program via Grant # ACI 1626217.

Funding

The financial assistance was provided by the Military Engineering BAA Contract No. W912HZ21C0040, and the Department of Defense (DoD) (Award No. W911NF-21-S-0011). The research described and the resulting data presented herein were funded under CA BO340 497014 Project, “Graphene Applications for Military Engineering,” under Contract W912HZ-21C0040, managed by the US Army Engineer Research and Development Center.

Author information

Authors and Affiliations

Authors

Contributions

P. N. S. designed the model and the computational framework, performed simulations, and analyzed the data. The first draft of the manuscript was written by P. N. S. and all authors commented on previous versions of the manuscript. D. M. and J. L. conceived the study and were in charge of overall direction and planning. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Jerzy Leszczynski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 455 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, P.N., Majumdar, D. & Leszczynski, J. Effects of graphene and thermoplastic elastomer on tailoring the bulk properties of asphaltenes: an exploration from classical and quantum simulations. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02330-4

Keywords

Navigation