Skip to main content
Log in

Study insights into the different cyclization mechanisms of ethyl cyanoacetate with salicylaldehyde and efficient synthesis of coumarin-3-carboxylate ester

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The condensation of ethyl cyanoacetate and salicylaldehyde would afford either coumarin-3-carboxylate ester or 3-cyancoumarin as the final product. Herein, comparative experiments and density functional theory (DFT) calculations were investigated to pursue a deeper understanding of the critical factor in this reaction. Experimental results indicated that condensation is accomplished through a cascade process, including the Knoevenagel procedure followed by selective cyclization of the phenolic hydroxyl group to the cyano or ester carbonyl group within the intermediate. Product distribution correlates well with the acid–base properties of the catalyst and the ability of the catalyst for forming complex by hydrogen bonds. Also, an efficient and facile approach was developed for the preparation of coumarin-3-carboxylate ester as a major product from the reaction of ethyl cyanoacetate with salicylaldehyde. Low-transition-temperature mixture (LTTM) formed from L-proline and oxalic acid was proved as an inexpensive, easily available, and efficient promoter which not only affords the products in high yields but also avoids the use of hazardous solvent and tedious isolation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data and materials are available with requirements.

References

  1. Grover J, Jachak SM (2015) RSC Adv 5:38892–38905

    Article  CAS  Google Scholar 

  2. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Chem Rev 119:10403–10519

    Article  PubMed  CAS  Google Scholar 

  3. Francisco CS, Francisco CS, Constantino AF, Neto ÁC, Lacerda V Jr (2019) Curr Org Chem 23:2722–2750

    Article  CAS  Google Scholar 

  4. Lončarić M, Gašo-Sokač D, Jokić S, Molnar M (2020) Biomolecules 10:151

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh J, Sharma A (2021) Adv Synth Catal 363:3411–3438

    Article  CAS  Google Scholar 

  6. Cerqueira NMFSA, Rodrigues LM, Oliveira-Campos AMF, Carvalho LHM, Coelho PJ, Dubest R, Aubard J, Samat A, Guglielmetti R (2003) Helv Chim Acta 86:3244–3253

    Article  CAS  Google Scholar 

  7. Ni S, Zhou J, Mei H, Han J (2018) Tetrahedron Lett 59:1309–1316

    Article  CAS  Google Scholar 

  8. Khan D, Mukhtar S, Alsharif MA, Alahmdi MI, Ahmed N (2017) Tetrahedron Lett 58:3183–3187

    Article  CAS  Google Scholar 

  9. Sairam M, Saidachary G, Raju BC (2015) Tetrahedron Lett 56:1338–1343

    Article  CAS  Google Scholar 

  10. Gao SQ, Xiao D, Yang Y, Wei XY, Sun S, Lang J, Lü CW (2016) Heterocycles 92:1698–1705

    Article  CAS  Google Scholar 

  11. Pan WY, Xiao YM, Xiong HQ, Lü CW (2016) Res Chem Intermediat 42:7057–7063

    Article  CAS  Google Scholar 

  12. Xiao YD, Liu A, Gao JL, Zou YZ, Lü CW, An Y (2020) Dyes Pigments 179:108415

    Article  CAS  Google Scholar 

  13. Gao JL, Liu A, Li MH, Wang YY, Xiao YD, Lü CW, An Y (2021) Res Chem Intermediat 47:3179–3187

    Article  CAS  Google Scholar 

  14. Bmfola G, Fringuelli F, Piermatti O, Pizzo F (1996) Heterocycles 43:1257–1266

    Article  Google Scholar 

  15. Chen J, Zhang Y (2001) J Chem Research(s) 394–395

  16. He X, Yan Z, Hu X, Zuo Y, Jiang C, Jin L, Shang Y (2014) Synth Commun 44:1507–1514

    Article  CAS  Google Scholar 

  17. Jing Y, Meng J, Liu Y, Wan J-P (2015) Chin J Chem 33:1194–1198

    Article  CAS  Google Scholar 

  18. Shockravi A, Shargi H, Valizadeh H, Heravic MM (2002) Phosphorus Sulfur Silicon 177:2555–2559

    Article  CAS  Google Scholar 

  19. Valizadeh H, Mamaghani M, Badrian A (2005) Synth Commun 35:785–790

    Article  CAS  Google Scholar 

  20. Valizadeh H, Shockravi A, Gholipur H (2007) J Heterocyclic Chem 44:867–870

    Article  CAS  Google Scholar 

  21. Augustine JK, Bombrun A, Ramappa B, Boodappa C (2012) Tetrahedron Lett 53:4422–4425

    Article  CAS  Google Scholar 

  22. Phadtare SB, Shankarling GS (2012) Environ Chem Lett 10:363–368

    Article  CAS  Google Scholar 

  23. Devulapally S, Syed T, Pramod KD (2014) Lett Org Chem 11:556–563

    Article  Google Scholar 

  24. Kiyani H, Daroonkala MD (2015) Bull Chem Soc Ethiop 29:449–456

    Article  CAS  Google Scholar 

  25. Keshavarzipour F, Tavakol H (2016) J Iran Chem Soc 13:149–153

    Article  CAS  Google Scholar 

  26. da Silveira Pinto LS, de Souza MV (2017) Synthesis 49:2677–2682

    Article  Google Scholar 

  27. Volmajer J, Toplak R, Leban I, Le MAM (2005) Tetrahedron 61:7012–7021

    Article  CAS  Google Scholar 

  28. He X, Shang Y, Zhou Y, Yu Z, Han G, Jin W, Chen J (2015) Tetrahedron 71:863–868

    Article  CAS  Google Scholar 

  29. Francisco M, van den Bruinhorst A, Kroon MC (2012) Green Chem 14:2153–2157

    Article  CAS  Google Scholar 

  30. Francisco M, van den Bruinhorst A, Kroon MC (2013) Angew Chem Int Ed 52:3074–3085

    Article  CAS  Google Scholar 

  31. Płotka-Wasylka J, de la Guardia M, Andruch V, Vilková M (2020) Microchem J 159:105539

    Article  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  PubMed  CAS  Google Scholar 

  33. Ho J, Klamt A, Coote ML (2010) J Phys Chem A 114:13442–13444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the Scientific Research Fund of Liaoning Provincial Education Department (No. LJKQZ2021092, LJKMZ20221433).

Funding

Scientific Research Fund of Liaoning Provincial Education Department (No. LJKQZ2021092, LJKMZ20221433).

Author information

Authors and Affiliations

Authors

Contributions

Chengwei Lü contributed to the study conception and design and reviewed the manuscript. Material preparation and data collection were performed by Si-Han Wei and Lu-Yang Qin. Analysis was conducted by Yu Luo and Si-Yu Chen. The first draft of the manuscript was written by Mo-Han Yu. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cheng-Wei Lü or Mo-Han Yu.

Ethics declarations

Ethical approval

This is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 18766 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, SH., Luo, Y., Chen, SY. et al. Study insights into the different cyclization mechanisms of ethyl cyanoacetate with salicylaldehyde and efficient synthesis of coumarin-3-carboxylate ester. Struct Chem 35, 341–348 (2024). https://doi.org/10.1007/s11224-023-02194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-023-02194-0

Keywords

Navigation