Skip to main content
Log in

Phase change enthalpies of some monosubstituted derivatives of adamantane: an experimental and theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The phase change energetics of adamantane, 1-adamantanemethanol, 1-adamantanethanol, 1-adamantanecarboxylic acid, and 1-adamantaneacetic acid is reported. To conduct the study of the compounds’ phase changes, calorimetric techniques and theoretical methodologies were applied. Mole fraction purities, enthalpies, fusion temperatures, and solid phase heat capacities were obtained using differential scanning calorimetry. Enthalpies of sublimation were determined from measurements of mass loss rate and the Clausius-Clapeyron and Langmuir equations, i.e., through thermogravimetric analysis. The gas-phase heat capacities of all stable conformers of the adamantane derivatives at different temperatures were estimated using harmonic oscillator approximation. Finally, the molecular interactions of the adamantane derivatives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this article and the supporting information.

Code availability

Not applicable.

References

  1. Landa S, Macháček V (1933) Sur l’adamantane, nouvel hydrocarbure extrait du naphte. Collect Czech Chem Commun 5:1–5

    Article  CAS  Google Scholar 

  2. Schleyer P von R, Williams JE, Blanchard KR (1970) Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. J Am Chem Soc 92:2377–2386

    Article  CAS  Google Scholar 

  3. Skinner HA, Pilcher G (1963) Bond energy-term values in hydrocarbons and related compounds. Q Rev Chem Soc 17:264–288

    Article  CAS  Google Scholar 

  4. Tatevskii VM (1961) Rules and methods for calculating the physical-chemical properties of paraffin hydrocarbons. Pergamon Press Ltd, London

    Google Scholar 

  5. Laidler KJ (1956) A system of molecular thermochemistry for organic gases and liquids. Can J Chem 34:626–648

    Article  CAS  Google Scholar 

  6. Motornaya AE, Alimbarova LM, Shokova ÉA, Kovalev VV (2006) Synthesis and antiherpetic activity of N-(3-amino-1-adamantyl)calix[4]arenes. Pharm Chem J 40:68–72

    Article  CAS  Google Scholar 

  7. Fridman AL, Zalesov VS, Moissev IK, Kolobov NA, Dobrilkin KV (1974) Synthesis and physiological activity of some adamantanecarboxylic acids and their derivatives. Khim.-farm Zh 8:6–8

    CAS  Google Scholar 

  8. Kovtun VY, Plakhotnik VM (1987) Use of adamantanecarboxylic acid for the modification of drugs and biologically active compounds (review). Pharm Chem J 21:555–563

    Article  Google Scholar 

  9. Pedrosa DJ, Timmermann L (2013) Review: management of Parkinson’s disease. Neuropsychiatr Dis Treat 9:321–340

    Article  Google Scholar 

  10. Hassine BB, Negrier P, Barrio M, Mondieig D, Massip S, Tamarit JL (2015) Phase transition in hydrogen-bonded 1-adamantane-methanol. Cryst Growth Des 1:4149–4155

    Article  Google Scholar 

  11. Ishizone T, Goseki R (2018) Synthesis of polymers carrying adamantyl substituents in side chain. Polym J 50:805–819

    Article  CAS  Google Scholar 

  12. Cigánek M, Heinrichová P, Kovalenko A, Kučerík J, Vala M, Weiter M, Krajčovič J Improved crystallinity of the asymmetrical diketopyrrolopyrrole derivates by the adamantane substitution. Dyes Pigm 175:108141

  13. Richtar J, Ciganek M, Prochazkova AJ, Kovalenki A, Seelajaroen H, Kratochvíl M, Weiter M, Yumusak C, Sariciftci NS, Lukeš V, Krajcovic (2021) Adamantane substitution effects on crystallization and electrooptical properties of epindolidione and quinacridone dyes. Chem Photo Chem 5:1059–1070

    CAS  Google Scholar 

  14. Ledo JM, Flores H, Freitas VLS, Solano-Altamirano JM, Hernández-Pérez JM, Camarillo EA, Ramos F, Ribeiro da Silva MDMC (2020) Benzocaine: a comprehensive thermochemical study. J Chem Thermodyn 147:106119

    Article  CAS  Google Scholar 

  15. Ledo JM, Flores H, Solano-Altamirano JM, Ramos F, Hernández-Pérez JM, Camarillo EA, Rabell B, Amador MP (2018) Experimental and theoretical study of methyl n-hydroxybenzoates. J Chem Thermodyn 124:1–9

    Article  CAS  Google Scholar 

  16. Ledo JM, Flores H, Hernández-Pérez JM, Ramos F, Camarillo EA, Solano-Altamirano JM (2018) Gas-phase enthalpies of formation of ethyl hydroxybenzoates: an experimental and theoretical approach. J Chem Thermodyn 116:176–184

    Article  CAS  Google Scholar 

  17. Flores H, Ledo JM, Camarillo EA, Solano-Altamirano JM, Hernández-Pérez JM, Ramos F, Rabell B (2019) Thermochemical study of methyl n-methoxybenzoates: an experimental and computational approach. J Chem Eng Data 64:1898–1908

    Article  CAS  Google Scholar 

  18. Wadsö I (1960) Heats of hydrolysis of phenyl acetate and phenyl thioacetate. Acta Chem Scand 14:561–565

    Article  Google Scholar 

  19. Wadsö I (1966) A heat of vaporization calorimeter for work at 25 degrees C and for small amounts of substances. Acta Chem Scand 20:536–543

    Article  Google Scholar 

  20. Morawetz E, Sunner S (1963) Design, construction, and testing of heat of vaporization calorimeter useful in the vapor pressure range 1 to 0.01 mm Hg at 25 degrees C. Acta Chem Scand 17:473–488

    Article  CAS  Google Scholar 

  21. Calvet E, Prat H (1956) Microcalorimetrie: Applications Physico Chimiques et Biologiques. Mason, Paris

    Google Scholar 

  22. Sabbah R, Chastel R, Laffitte M (1972) Mesures calorimet́riques des enthalpies de vaporization et de sublimation par effusion; mise au point de la technique. Thermochim Acta 5:117–127

    Article  CAS  Google Scholar 

  23. Sabbah R, Antipine I, Coten M, Davy L (1987) Quelques reflexions a propos de la mesure calorimetrique de l’enthalpie de sublimation ou vaporisation. Thermochim Acta 115:153–165

    Article  CAS  Google Scholar 

  24. Flores H, Ramos F, Camarillo EA, Santiago O, Perdomo G, Notario R, Cabrera S (2018) Isothermal thermogravimetric study for determining sublimation enthalpies of some hydroxyflavones. J Chem Eng Data 63:1925–1936

    Article  CAS  Google Scholar 

  25. Ramos F, Ledo JM, Flores H, Camarillo EA, Carvente J, Amador MP (2017) Evaluation of sublimation enthalpy by thermogravimetry: analysis of the diffusion effects in the case of methyl and phenyl substituted hydantoins. Thermochim Acta 655:181–193

    Article  CAS  Google Scholar 

  26. Price DM, Hawkins M (1998) Calorimetry of two disperse dyes using thermogravimetry. Thermochim Acta 315:19–24

    Article  CAS  Google Scholar 

  27. Perdomo G, Flores H, Notario R, Camarillo EA, Amador MP (2017) Enthalpies of formation of four isoxazole derivatives in the solid and gas phases: application to the study of chemical equilibria. Struct Chem 28:1111–1123

    Article  CAS  Google Scholar 

  28. Ramos F, Flores H, Rojas A, Hernańdez-Peŕez JM, Camarillo EA, Amador MP (2016) Experimental and computational thermochemical study of benzofuran, benzothiophene and indole derivatives. J Chem Thermodyn 97:297–306

    Article  CAS  Google Scholar 

  29. Price DM (2001) Vapor pressure determination by thermogravimetry. Thermochim Acta 367–368:253–262

    Article  Google Scholar 

  30. Chatterjee K, Hazra A, Dollimore D, Alexander KS (2002) Estimating vapor pressure curves by thermogravimetry: a rapid and convenient method for characterization of pharmaceuticals. Eur J Pharm Biopharm 5:171–180

    Article  Google Scholar 

  31. Martínez-Herrera M, Campos M, Torres LA, Rojas A (2015) Enthalpies of sublimation of fullerenes by thermogravimetry. Thermochim Acta 622:72–81

    Article  Google Scholar 

  32. Sánchez-Bulás T, Cruz-Vásquez O, Hernández-Obregón J, Rojas A (2017) Enthalpies of fusion, vaporization and sublimation of crown ethers determined by thermogravimetry and differential scanning calorimetry. Thermochim Acta 650:123–133

    Article  Google Scholar 

  33. Plato C, Glasgow SR (1969) Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds. Anal Chem 41:330–336

    Article  CAS  Google Scholar 

  34. Brown ME (1979) Determination of purity by differential scanning calorimetry (DSC). J Chem Educ 56:310–313

    Article  CAS  Google Scholar 

  35. Bazyleva AB, Blokhin AV, Kabo GJ, Charapennikau MB, Emel’yanenko VN, Verevkin SP, Diky V (2011) Thermodynamic properties of adamantane revisited. J Phys Chem B 115:10064–10072

    Article  CAS  Google Scholar 

  36. Sabbah R, Xu-wu A, Chickos JS, Platas Leitaõ ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204

    Article  CAS  Google Scholar 

  37. Höhne GWH, Hemminger WF, Flammersheim HJ (2003) Differential scanning calorimetry. Springer-Verlag, New York

    Book  Google Scholar 

  38. Pieterse N, Focke WW (2003) Diffusion-controlled evaporation through a stagnant gas: estimating low vapour pressures from thermogravimetric data. Thermochim Acta 406:191–198

    Article  CAS  Google Scholar 

  39. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books, California

    Google Scholar 

  40. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M Heyd J.J, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador , Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT

  42. Meíja J, Coplen TB, Berglund M, Brand WA, De Biev̀re P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl Chem 88:265–291

    Article  Google Scholar 

  43. Stetter H, Shwarz M, Hirschhorn A (1959) Compounds with urotropine structure. XII. Monofunctional adamantane derivatives. Chem Ber 92:1629–1635

    Article  CAS  Google Scholar 

  44. Grob CA, Schwarz W, Fischer HP (1964) Einfluss der γ-Verzweigung auf Solvolysegeschwindigkeit und Fragmentierung von Alkyl- und Cycloalkyl-Halogeniden und -Arylsulfonaten. Fragmentierungsreaktionen, 8. Mitteilung Helv Chim Acta 47:1385–1401

    Article  CAS  Google Scholar 

  45. Sturz L, Witusiewicz VT, Hecht U, Rex S (2004) Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth. J Cryst Growth 270:273–282

    Article  CAS  Google Scholar 

  46. Stepanov FN, Danilenko GI (1965) Adamantane and its derivatives. V. Condensation of bromo derivatives of adamantane with sodiomalonic ester. Akad Nauk SSSR Otd Obshch i Tekhn Khim Chem Abstr 65:101–103

    Google Scholar 

  47. Bruchhausen FV, Ebel S, Frahm AW, Hackenthal E (1993) Hagers Handbuch der Pharmazeutischen Praxis: Stoffe A-D, Ausgabe 5. Springer-Verlag, Berlin

    Book  Google Scholar 

  48. Emel’yanenko VN, Nagrimanov RN, Solomonov BN, Verevkin SP (2016) Adamantanes: benchmarking of thermochemical properties. J Chem Thermodyn 101:130–138

    Article  Google Scholar 

  49. Steele WV, Carson AS, Laye PG, Rosser CA (1973) Enthalpies of formation of adamantanoid compounds. Part 3. —adamantanecarboxylic acids. J Chem Soc Perkin Trans 69:1257–1260

    CAS  Google Scholar 

  50. Burkhard J, Janků J, Vodička L (1988) Reaction of 1-acetyladamantane with thionyl chloride. Collect Czech Chem Commun 53:110–113

    Article  CAS  Google Scholar 

  51. Stulin NV, Yudashkin AV, Shiryaev AK, Moiseev IK, Petrov AS (1984) Preparation of 1-bromoadamantane and adamantane-1-carboxylic acid from 1-adamantyl nitrate. Pharm Chem J 18:337–339

    Article  Google Scholar 

  52. Doležálková I, Janiš R, Buňková L, Slobodian P, Vícha R (2012) Preparation, characterization and antibacterial activity of 1-monoacylglycerol of adamantane-1-carboxylic acid. J Food Biochem 37:544–553

    Article  Google Scholar 

  53. Aigami K, Inamoto Y, Takaishi N, Hattori K, Takatsuki A, Tamura G (1975) Biologically active polycycloalkanes. 1. Antiviral adamantane derivatives. J Med Chem 18:713–721

    Article  CAS  Google Scholar 

  54. Kovalev VV, Alimbarova LM, Shokova EA, Katrukha GS (2009) Synthesis, antiherpes, and antibacterial activity of n-linked conjugates of eremomycin with adamantanecarboxylic acids. Pharm Chem J 43:485–490

    Article  CAS  Google Scholar 

  55. Mohammed S, Li L (2018) From serendipity to supramolecular design: assessing the utility of computed crystal form landscapes in inferring the risks of crystal hydration in carboxylic acids. Cryst Eng Comm 20:6026–6039

    Article  Google Scholar 

  56. Chang S-S, Westrum EF Jr (1960) Heat capacities and thermodynamic properties of globular molecules. i. adamantane and hexamethylenetetramine. J Phys Chem 64:1547–1551

    Article  CAS  Google Scholar 

  57. Clark T, Knox TMO, McKervey MA, Mackle H, Rooney J (1979) Thermochemistry of bridged-ring substances. Enthalpies of formation of some diamondoid hydrocarbons and of perhydroquinacene. Comparisons with data from empirical force field calculations. J Am Chem Soc 101:2404–2410

    Article  CAS  Google Scholar 

  58. Miroshnichenko EA, Lebedev VP, Matyushin YuN (2002) Energy properties of adamantane derivatives. Dokl Phys Chem 382:40–42

    Article  CAS  Google Scholar 

  59. Mokbel I, Růžička K, Majer V, Růžička V, Ribeiro M, Jose J, Zábranský M (2000) Vapor pressures and thermal data for three high-boiling compounds of petroleum interest: 1-phenyldodecane, (5α)-cholestane, adamantane. Fluid Phase Equilib 169:191–207

    Article  CAS  Google Scholar 

  60. Jochems R, Dekker H, Mosselman C, Somsen G (1982) The use of the LKB 8721–3 Vaporization calorimeter to measure enthalpies of sublimation The enthalpies of sublimation of bicyclo[2.2.1]hept-2-ene (norbornene), bicyclo[2.2.1]heptane (norbornane), and tricyclo[3.3.1.13,7]decane (adamantane). J Chem Thermodyn 14:395–398

    Article  CAS  Google Scholar 

  61. Roux MV, Martín-Valcarcel G, Notario R, Kini S, Chickos JS, Liebman JF (2011) The joining of measurement and prediction: the enthalpy of formation of 1,4-cubanedicarboxylic acid. J Chem Eng Data 56:1220–1228

    Article  CAS  Google Scholar 

  62. Chickos J, Hesse D, Hosseini S, Nichols G, Webb P (1998) Sublimation enthalpies at 298.15 K using correlation gas chromatography and differential scanning calorimetry measurements. Thermochim Acta 313:101–110

    Article  CAS  Google Scholar 

  63. Wu P, Hsu L, Dows DA (1971) Spectroscopic study of the phase transition in crystalline adamantane. J Chem Phys 54:2714–2721

    Article  CAS  Google Scholar 

  64. Chickos JS, Hesse DG, Liebman JF (1993) A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K. Struc Chem 4:261–269

    Article  CAS  Google Scholar 

  65. Acree W, Chickos JS (2016) Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1− C10. J Phys Chem Ref Data 45:033101

    Article  Google Scholar 

  66. Chickos JS, Hanshaw W (2004) Vapor pressures and vaporization enthalpies of the n-alkanes from C31 to C38 at T = 298.15 K by correlation gas chromatography. J Chem Eng Data 49:620–630

    Article  CAS  Google Scholar 

  67. Chickos JS, Hanshaw W (2004) Vapor pressures and vaporization enthalpies of the n-alkanes from C21 to C30 at T = 298.15 K by correlation gas chromatography. J Chem Eng Data 49:77–85

    Article  CAS  Google Scholar 

  68. Donohue J, Goodman S-H (1967) The crustal structure of adamantane: an example of false minimum in least squares. Acta Cryst 22:352–354

    Article  CAS  Google Scholar 

  69. Bélanger-Gariépy F, Brisse F, Harvey PD, Gilson DFR, Butler AS (1990) The crystal molecular structures of adamantanecarboxylic acid at 173 and 280 K. Can J Chem 68:1163–1169

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México, CONACYT member of the network of national laboratories.

Funding

This research was funded by Benemérita Universidad Autónoma de Puebla, México. VIEP BUAP provided support (Project nos. 100279411-VIEP2021, 100525751-VIEP2021, and 100501044-VIEP2021). OSS received his PhD grant from CONACYT México (registration number 713949).

Author information

Authors and Affiliations

Authors

Contributions

OSS, SGP, JRS, and RHE developed experimental and theoretical methodologies in the present work. HF and EAC wrote drafts of the manuscript and supervised the performance of the experiments. JMSA and JMHP supervised the development of the theoretical calculations. HF, EAC, JMSA, and JMHP wrote the final form of the manuscript. All authors agreed to submit the manuscript in present form.

Corresponding author

Correspondence to Henoc Flores.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2765 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago-Sosa, O., Camarillo, E.A., García-Pineda, S. et al. Phase change enthalpies of some monosubstituted derivatives of adamantane: an experimental and theoretical study. Struct Chem 34, 193–202 (2023). https://doi.org/10.1007/s11224-022-02073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02073-0

Keywords

Navigation