Skip to main content
Log in

Exploring structural requirements of simple benzene derivatives for adsorption on carbon nanotubes: CoMFA, GRIND, and HQSAR

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, three quantitative structure–activity relationship (QSAR) methods involving comparative molecular field analysis (CoMFA) and GRid-INdependent Descriptors (GRIND) based 3D-QSAR and hologram QSAR (HQSAR) were evaluated for predicting adsorption coefficients of the simple benzene derivatives on mutiwalled carbon nanotubes (MWCNTs). The contour maps of CoMFA suggested that the steric hindrance had a significant impact on the adsorption process of substituted benzenes. GRIND studies investigate the important mutual distances between molecular features, which confirmed the role of hydrophobic groups as well as their distances from different steric hot spots in the benzene ring of the molecules. According to HQSAR model and its fragment contribution map, the hydrogen bond donor and acceptor were also found to play an important role in governing adsorption of substituted benzenes on CNTs. The CoMFA, GRIND, and HQSAR methods employed to build predictive 2D- and 3D-QSAR models for adsorption of simple benzene derivatives on CNTs in aqueous media successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170(2–3):395–410

    Article  CAS  Google Scholar 

  2. Sinha N, Ma J, Yeow JT (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6(3):573–590

    Article  CAS  PubMed  Google Scholar 

  3. Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55

    Article  CAS  PubMed  Google Scholar 

  4. Hyung H, Kim JH (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol 42(12):4416–4421

    Article  CAS  PubMed  Google Scholar 

  5. Gupta VK, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Garshasbi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46(2):93–118

  6. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58(1):49–52

    Article  CAS  Google Scholar 

  7. Liu X, Zhang S, Pan B (2012) Potential of carbon nanotubes in water treatment. Recent Progress in Carbon Nanotube Research/Book 2, Provisional chapter

  8. Ong YT, Ahmad AL, Zein SHS, Tan SH (2010) A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng 27(2):227–242

    Article  CAS  Google Scholar 

  9. Huff J (2007) Benzene-induced cancers: abridged history and occupational health impact. Int J Occup Environ Health 13(2):213–221

    Article  CAS  PubMed  Google Scholar 

  10. Salahinejad M, Ghasemi JB (2014) 3D-QSAR studies on the toxicity of substituted benzenes to Tetrahymena pyriformis: CoMFA, CoMSIA and VolSurf approaches. Ecotoxicol Environ Saf 105:128–134

    Article  CAS  PubMed  Google Scholar 

  11. Tranfo G (2011) Benzene and its derivatives: new uses and impacts on environment and human health. Nova Science Pub Incorporated

  12. Rashed MN (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. Organic Pollutants: Monitoring, Risk and Treatment, Intech Publisher Croatia

  13. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014

  14. Woods LM, Bădescu ŞC, Reinecke TL (2007) Adsorption of simple benzene derivatives on carbon nanotubes. Phys Rev B 75(15):155415

    Article  Google Scholar 

  15. Collins PG (2010) Defects and disorder in carbon nanotubes. Oxford University Press, Oxford

    Google Scholar 

  16. Brooks AJ, Lim HN, Kilduff JE (2012) Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons. Nanotechnology 23(29):294008

    Article  CAS  PubMed  Google Scholar 

  17. Rieth M, Schommers W (2007) Handbook of theoretical and computational nanotechnology. Volume 7: magnetic nanostructures and nano-optics. American Scientific Publishers

  18. Cruciani G, Carosati E, Clementi S (2003) Three-dimensional quantitative structure-property relationships. The practice of medicinal chemistry

  19. Dearden JC (2017) The history and development of quantitative structure-activity relationships (QSARs). In: Oncology: breakthroughs in research and practice. IGI Global, pp 67–117

  20. Ghasemi JB, Salahinejad M, Rofouei MK (2011) Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol Chem 23(9):614–629

    Article  Google Scholar 

  21. Langer T, Bryant SD (2008) 3D quantitative structure–property relationships. In: The practice of medicinal chemistry. Academic Press, pp 587–604

  22. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic press

  23. Salahinejad M (2015) Application of classification models to identify solvents for single-walled carbon nanotubes dispersion. RSC Adv 5(29):22391–22398

    Article  CAS  Google Scholar 

  24. Burello E, Worth AP (2011) QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(3):298–306

    Article  CAS  PubMed  Google Scholar 

  25. Salahinejad M, Zolfonoun E (2013) QSAR studies of the dispersion of SWNTs in different organic solvents. J Nanopart Res 15(11):1–9

    Article  Google Scholar 

  26. Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Benfenati E, Leszczynska D, Leszczynski J (2016) Nano-QSAR: model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol Environ Saf 124:32–36

    Article  CAS  PubMed  Google Scholar 

  27. Winkler DA (2016) Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials. Toxicol Appl Pharmacol 299:96–100

    Article  CAS  PubMed  Google Scholar 

  28. Damale G, Harke MN, Kalam SA, Khan FB, Shinde DN, Sangshetti J (2014) Recent advances in multidimensional QSAR (4D–6D): a critical review. Mini Rev Med Chem 14(1):35–55

  29. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  PubMed  Google Scholar 

  30. Xia XR, Monteiro-Riviere NA, Riviere JE (2010) An index for characterization of nanomaterials in biological systems. Nat Nanotechnol 5(9):671–675

    Article  CAS  PubMed  Google Scholar 

  31. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967

  32. Kubinyi H (2002) Comparative molecular field analysis (CoMFA). Encyclopedia of Computational Chemistry. John Wiley & Sons, Ltd

  33. Pastor M, Cruciani G, Clementi S (1997) Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure−activity relationships. J Med Chem 40(10):1455–1464

    Article  CAS  PubMed  Google Scholar 

  34. Duran A, Martínez GC, Pastor M (2008) Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in molecular interaction fields. J Chem Inf Model 48(9):1813–1823

    Article  CAS  PubMed  Google Scholar 

  35. Baroni M, Costantino G, Cruciani G, Riganelli D, Valigi R, Clementi S (1993) Generating optimal linear PLS estimations (GOLPE): an advanced chemometric tool for handling 3D-QSAR problems. Quant Struct-Act Relat 12(1):9–20

    Article  CAS  Google Scholar 

  36. Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW, Sheehan DM (1998) Evaluation of quantitative structure−activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci 38(4):669–677

  37. Doddareddy MR, Lee YJ, Cho YS, Choi KI, Koh HY, Pae AN (2004) Hologram quantitative structure activity relationship studies on 5-HT6 antagonists. Bioorg Med Chem 12(14):3815–3824

    Article  CAS  PubMed  Google Scholar 

  38. Ugarkar AG, Ambre PK, Coutinho EC, Nandan S, Pissurlenkar RR (2014) Extracting structural requirements for activity of GPR119 agonists: a hologram quantitative structure activity relationship (HQSAR) study. Can J Chem 92(7):670–676

    Article  CAS  Google Scholar 

  39. Wold S et al (2001) PLS-regression: a basic tool of chemometrics. Chem Intell Lab Sys 58:109–130

    Article  CAS  Google Scholar 

  40. Cramer RD III, Bunce JD, Patterson DE, Frank IE (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct-Act Relat 7(1):18–25

    Article  Google Scholar 

  41. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77

    Article  CAS  Google Scholar 

  42. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33

    Article  CAS  Google Scholar 

  43. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  CAS  PubMed  Google Scholar 

  44. Fontaine F, Pastor M, Sanz F (2004) Incorporating molecular shape into the alignment-free Grid-Independent Descriptors. J Med Chem 47(11):2805–2815

    Article  CAS  PubMed  Google Scholar 

  45. Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, Riviere JE (2011) Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5(11):9074–9081

  46. Liu Y, Zhang J, Chen X, Zheng J, Wang G, Liang G (2014) Insights into the adsorption of simple benzene derivatives on carbon nanotubes. RSC Adv 4(101):58036–58046

    Article  CAS  Google Scholar 

  47. Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: emphasis on scaling of response data. J Comput Chem 34(12):1071–1082

    Article  CAS  PubMed  Google Scholar 

  48. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26(5):694–701

    Article  CAS  Google Scholar 

  49. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Altern Lab Anim 33(5):445–459

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful to the Lorestan University high education Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

NS: conceptualization, methodology, writing—review and editing, project administration, supervision, and funding acquisition. FM: validation, formal analysis, investigation, resources, data curation, writing—original draft.

Corresponding author

Correspondence to Nahid Sarlak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, F., Sarlak, N. Exploring structural requirements of simple benzene derivatives for adsorption on carbon nanotubes: CoMFA, GRIND, and HQSAR. Struct Chem 34, 413–424 (2023). https://doi.org/10.1007/s11224-022-01973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01973-5

Keywords

Navigation