Skip to main content
Log in

On the correspondence between physical quantities for 4fN ions and crystal point groups

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Crystalline-electric field parameters and normal modes of vibrations have been exemplified in regard to the number of observable physical quantities depending on the site symmetry of a central 4fN ion. The variations of these quantities with the order k of the 32 crystal point groups have been discussed. It has been found that the number of crystalline-electric field parameters change with k in asymmetric hyperbolic type while the maximum number of subgroups within the space of normal modes increase with k because crystal point groups with higher values of k result in more symmetry species of vibrations. Examples have been also given with maximums of phonon frequencies in dielectric crystals used as matrices doped with Ln3+ ions. In this case, a discontinuity exists in the middle of the order k of the crystal point groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

All data generated or analysed during this study are included in this article.

References

  1. Bethe H (1929) Termaufspaltung in kristallen Ann Phys 3:133–208. https://doi.org/10.1002/andp.19293950202

    Article  CAS  Google Scholar 

  2. Hellwege HK (1949) Elektronenterme und strahlung von atomen in kristallen. I. Termaufspaltung und elektrische dipolstrahlung Ann Phys 439:95–126. https://doi.org/10.1002/andp.19484390302

    Article  Google Scholar 

  3. Elliott RJ, Stevens KWH (1953) The theory of magnetic resonance experiments on salts of rare earths. Proc Roy Soc A 218:553–566. https://doi.org/10.1098/rspa.1953.0124

    Article  CAS  Google Scholar 

  4. Hutchings MT (1964) Point-charge calculations of energy levels of magnetic ions in crystalline electric fields. Solid State Phys 16:227–273. https://doi.org/10.1016/S0081-1947(08)60517-2

    Article  CAS  Google Scholar 

  5. Burns G, Axe JD (1967) In: Crosswhite HM, Moos HW (eds) Optical properties of ions in crystals, Interscience, New York

  6. Sengupta D, Artman JO (1973) Crystal-field splittings of f3 systems: covalency effects. J Chem Phys 54:1010–1014. https://doi.org/10.1063/1.1674932

    Article  Google Scholar 

  7. Newman DJ (1971) Theory of lanthanide crystal fields. Adv Phys 20:197–256. https://doi.org/10.1080/00018737100101241

    Article  CAS  Google Scholar 

  8. Dieke GH (1968) Spectra and energy levels of rare earth ions in crystals. John Wiley & Sons, New York

    Google Scholar 

  9. Morrison CA, Leavitt RP (1982) In: Gschneidner KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, North-Holland, Amsterdam

  10. Carnall WT, Goodman GL, Rajnak K, Rana RS (1989) A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. Chem Phys 90:3443–3457. https://doi.org/10.1063/1.455853

    Article  CAS  Google Scholar 

  11. Garcia D, Faucher M (1995) In: Gschneidner KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, North-Holland, Amsterdam

  12. Taylor KNR, Darby MI (1972) Physics of rare earth solids. Chapman & Hall, London

    Google Scholar 

  13. Bauer E, Rotter M (2009) In: Belin-Ferre E (ed) Properties and applications of complex intermetallics, World Scientific, EU https://doi.org/10.1142/7228

  14. Morrison C, Mason DR, Kikuchi C (1967) Modified Slater integrals for an ion in a solid. Phys Lett A 24:607–608. https://doi.org/10.1016/0375-9601(67)90642-1

    Article  CAS  Google Scholar 

  15. Newman DJ (1973) Slater parameter shift in substituted lanthanide ions. Phys Chem Solids 34:541–545. https://doi.org/10.1016/0022-3697(73)90049-8

    Article  CAS  Google Scholar 

  16. Rudowicz C, Chua M, Reid MF (2000) On the standardization of crystal-field parameters and the multiple correlation fitting technique: applications to rare-earth compounds. Phys B: Condens Matter 291:327–338. https://doi.org/10.1016/S0921-4526(99)01879-7

    Article  CAS  Google Scholar 

  17. Auzel F (1979) L’auto-extinction de Nd3+: son mecanisme undamental et un critere predictif simple pour les materiaux minilaser. Mater Res Bull 14:223–231. https://doi.org/10.1016/0025-5408(79)90122-3

    Article  CAS  Google Scholar 

  18. Auzel F, Malta O (1983) A scalar crystal field strength parameter for rare-earth ions: meaning and usefulness. J Phys 44:201–206. https://doi.org/10.1051/jphys:01983004402020100

    Article  CAS  Google Scholar 

  19. Edvardsson S, Klintenberg M (1998) Role of the electrostatic model in calculating crystal-field parameters. J Alloys Compd 275–277:230–233. https://doi.org/10.1016/S0925-8388(98)00309-0

    Article  Google Scholar 

  20. Racah G (1949) The theory of complex spectra. IV Phys Rev 76:1352–1365. https://doi.org/10.1103/PhysRev.76.1352

    Article  CAS  Google Scholar 

  21. Wybourne BG (1965) Spectroscopic properties of rare earths. John Wiley & Sons, New York

    Book  Google Scholar 

  22. Judd BR (1969) Topics in atomic theory. Wiley Interscience, New York

    Google Scholar 

  23. Duan C-K, Tanner PA (2010) What use are crystal field parameters? A chemist’s viewpoint. J Phys Chem A 114:6055–6062. https://doi.org/10.1021/jp1015214

    Article  CAS  PubMed  Google Scholar 

  24. Mulak J (2003) The minimal number of parameters in triclinic crystal-field potential. Phys B: Condens Matter 337:173–179. https://doi.org/10.1016/S0921-4526(03)00401-0

    Article  CAS  Google Scholar 

  25. Neumann FE, Meyer OE (1885) Vorlesungen über die theorie der elastizität der festen körper und des lichttäters. Teubner-Verlag, Leipzig

    Google Scholar 

  26. McWeeney R (1963) In: Jones H (ed) The International encyclopedia of physical chemistry and chemical physics, Pergamon Press, Oxford

  27. Hahn T (2005) International tables for crystallography. Springer, Dordrecht, Netherlands

    Google Scholar 

  28. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations: The Theory of infrared and raman vibrational spectra. Dover Publications, New York

    Google Scholar 

  29. Wigner EP (1930) Über die elastischen eigenschwingungen symmetrischer systeme. Nachr Ges Wiss Göttingen

  30. Takegahara K (2000) Matrix elements of crystal electric fields in rare earth compounds. J Phys Soc Japan 69:1572–1573. https://doi.org/10.1143/JPSJ.69.1572

    Article  CAS  Google Scholar 

  31. Wooster WA (1973) Tensors and group theory for the physical properties of crystals. Clarendon Press, Oxford

    Google Scholar 

  32. Flurry RL (1980) Symmetry groups. Theory and chemical applications. Prentice-Hall, Inc, New York

  33. Reisfeld R (2015) Optical properties of lanthanides in condensed phase, theory and applications. AIMS Mater Sci 2:37–60. https://doi.org/10.3934/matersci.2015.2.37

    Article  CAS  Google Scholar 

  34. Lide D (2004) CRC Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  35. Moncorge R (2003) Laser crystals with low phonon frequencies. Ann Chim Sci Mat 28:5–20. https://doi.org/10.1016/j.anncsm.2003.09.004

    Article  CAS  Google Scholar 

  36. Liu B, Gu M, Qi Z, Liu X, Huang S, Ni C (2007) First-principles study of lattice dynamics and thermodynamic properties of LaCl3 and LaBr 3. Phys Rev B 76:064307. https://doi.org/10.1103/PhysRevB.76.064307

    Article  CAS  Google Scholar 

  37. Soni HR, Gupta SK, Talafi M, Jha PK (2011) Ground state and lattice dynamical study of ionic conductors CaF2, SrF2, and BaF2 using density functional theory. J Phys Chem Solids 72:934–939. https://doi.org/10.1016/j.jpcs.2011.04.018

    Article  CAS  Google Scholar 

  38. Reisfeld R, Jørgensen CK (1977) Inorganic chemistry concepts. Springer-Verlag, Berlin

    Google Scholar 

  39. Johnson LE, Guggenheim HJ (1973) Appl Phys Lett 23:96–98

    Article  CAS  Google Scholar 

  40. Hernández-Rodriguez MA, Monteseguto V, Lozano-Gorrin AD, Manjón FJ, González-Platas J, Rodriguez- Hernández P, Munoz A, Lavin V, Martin IR, Rodriguez-Mendoza UR (2017) Structural, vibrational, and elastic properties of yttrium orthoaluminate nanoperovskite at high pressures. J Phys Chem C 121:15353–15367. https://doi.org/10.1021/acs.jpcc.7b04245

    Article  CAS  Google Scholar 

  41. Malkin BZ (2005) In: Liu G, Jacquier B (eds) Spectroscopic properties of rare earths in optical materials, Springer, Switzerland

  42. Tropf WJ, Thomas ME (1998) In: Palik E (ed) Handbook of optical constants of solids. Elsevier

  43. Suda J, Kamishima O, Hamaoka K, Matsubara I, Hattori T, Sato T (2003) The first-order Raman spectra and lattice dynamics for YAlO3 crystal. J Phys Soc Jap 72:1418–1422. https://doi.org/10.1143/JPSJ.72.1418

    Article  CAS  Google Scholar 

Download references

Funding

Herewith, the authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dimitar Nikolaev Petrov. The first draft of the manuscript was written by Bogdan Mihailov Angelov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dimitar Nikolaev Petrov.

Ethics declarations

Conflicts of interests

The authors Dimitar Nikolaev Petrov and Bogdan Mihailov Angelov have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, D.N., Angelov, B.M. On the correspondence between physical quantities for 4fN ions and crystal point groups. Struct Chem 33, 1997–2002 (2022). https://doi.org/10.1007/s11224-022-01970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01970-8

Keywords

Navigation