Skip to main content
Log in

Quantum-chemical study of organic reaction mechanisms. XI.*1 Biologically active 4-substituted 1,2,4-triazoles from diformylhydrazine and aminophenols

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Derivatives of 1,2,4-triazole exhibit antimicrobial, anticonvulsant, anti-inflammatory, immunomodulatory, and other types of activity, which makes it possible to create effective drugs on their basis. Understanding the reaction mechanism for the formation of triazoles helps to control the chemical process and conduct targeted synthesis. Quantum-chemical modeling of the mechanism of interaction of diformylhydrazine with o- and p-aminophenols was carried out using the combined approach CCSD (T)/6–31+G*//B3LYP/6–311++G**. The elementary stages of the reaction, possible intermediate compounds, and transition states have been established. The obtained results have been compared with the data from NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Scheme 5
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chirkina EA, Krivdin LB, Nikonova BC, Grabel′nyh VA, Korchevin NA, Rosentsveig IB (2021) Quantum-chemical study of the mechanisms of organic reactions: X. On the interaction of potassium 1,3-propanedithiolate with 1,3-dichloropropene in the system hydrazine hydrate-KOH. Russ. J Org Chem (Engl Transl) 57:1073–1083. https://doi.org/10.31857/S0514749221070077

  2. Richards D, Coleman J, Reynolds J, Aronson J (2011) Oxford handbook of practical drug therapy. Oxford University Press, Oxford, New York. https://doi.org/10.1093/med/9780199562855.001.0001

    Book  Google Scholar 

  3. Maddila S, Pagadala R, Jonnalagadda SB (2013) 1,2,4-triazoles: a review of synthetic approaches and the biological activity. Lett Org Chem 10:693–714. https://doi.org/10.2174/157017861010131126115448

    Article  CAS  Google Scholar 

  4. Gao F, Wang T, Xiao J, Huang G (2019) Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem 173:274–281. https://doi.org/10.1016/j.ejmech.2019.04.043

    Article  CAS  PubMed  Google Scholar 

  5. Gomaa HAM, Sherief HAM, Hussein S, Gouda AM, Salem OIA, Alharbi KS, Hayallah AM, Youssif BGM (2020) Novel 1,2,4-triazole derivatives as apoptotic inducers targeting p53: synthesis and antiproliferative activity. Bioorganic Chem 105:104369–104375. https://doi.org/10.1016/j.bioorg.2020.104369

    Article  CAS  Google Scholar 

  6. Aggarwal G, Sumran R (2020) An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 205:112652. https://doi.org/10.1016/j.ejmech.2020.112652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumari M, Tahlan S, Narasimhan B, Ramasamy K, Lim SM, Shan SAA, Mani V, Kakkar S (2021) Synthesis and biological evaluation of heterocyclic 1,2,4-triazole scaffolds as promising pharmacological agents. BMC Chemistry 15:5. https://doi.org/10.1186/s13065-020-00717-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elokhina VN, Nakhmanovich AS, Yaroshenko TI, Stepanova ZV, Larina LI (2006) Synthesis of 4-(Hydroxyphenyl)-1,2,4-triazoles. Russ J Gen Chem 76:161–163. https://doi.org/10.1134/S1070363206010312

    Article  CAS  Google Scholar 

  9. Larina LI, Lopyrev VA (2009) Nitroazoles: synthesis, structure and application. Springer, New York, 446 p. ISBN 978–0–387–98069–0 https://doi.org/10.1007/978-0-387-98070-6

  10. Jin R, Wang Y, Guo H, Long X, Li J, Yue S, Zhang S, Zhang G, Meng Q, Wang C, Yan H, Tang Y, Zhou S (2020) Design, synthesis, biological activity, crystal structure and theoretical calculations of novel 1,2,4-triazole derivatives. J Mol Struct 1202:127234. https://doi.org/10.1016/j.molstruc.2019.127234

    Article  CAS  Google Scholar 

  11. Demirbaş Ü, Özçifçi Z, Akçay HT, Menteşe E (2020) Novel phthalocyanines bearing 1,2,4 triazole substituents: synthesis, characterization, photophysical and photochemical properties. Polyhedron 181:114470. https://doi.org/10.1016/j.poly.2020.114470

    Article  CAS  Google Scholar 

  12. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB (2020) A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25:1909. https://doi.org/10.3390/molecules25081909

    Article  CAS  PubMed Central  Google Scholar 

  13. Wu J, Jiang Y, Lian Z, Li H, Zhang J (2021) Computational design and screening of promising energetic materials: the coplanar family of novel heterocycle-based explosives. Int J Quantum Chem 121:e26788. https://doi.org/10.1002/qua.26788

    Article  CAS  Google Scholar 

  14. Gonnet L, Baron M, Baltas M (2021) Synthesis of biologically relevant 1,2,3- and 1,3,4-triazoles: from classical pathway to green chemistry. Molecules 26:5667–5675. https://doi.org/10.3390/molecules26185667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aromí G, Barrios LA, Roubeau O, Gamez P (2011) Triazoles and tetrazoles: prime ligands to generate remarkable coordination materials. Coord Chem Review 255:485–546. https://doi.org/10.1016/j.ccr.2010.10.038

    Article  CAS  Google Scholar 

  16. Mogensen SB, Taylor MK, Lee J-W (2020) Homocoupling reactions of azoles and their application in coordination chemistry. Molecules 25:5950–5956. https://doi.org/10.3390/molecules25245950

    Article  CAS  PubMed Central  Google Scholar 

  17. Neumann S, Biewend M, Rana S, Binder WH (2020) The CuAAC: principles, homogeneous and heterogeneous catalysts, and novel developments and applications. Macromol Rapid Commun 41:1900359. https://doi.org/10.1002/marc.201900359

    Article  CAS  Google Scholar 

  18. Larina LI (2017) Tautomerism and structure of azoles: nuclear magnetic resonance spectroscopy. Adv Heterocyc Chem 124:233–321. https://doi.org/10.1016/bs.aihch.2017.06.003

    Article  CAS  Google Scholar 

  19. Patel VM, Patel NB, Chan-Bacab MJ, Rivera G (2018) Synthesis, biological evaluation and molecular dynamics studies of 1,2,4-triazole clubbed Mannich bases. Comput Biol Chem 76:264–274. https://doi.org/10.1016/j.compbiolchem.2018.07.020

    Article  CAS  PubMed  Google Scholar 

  20. Karczmarzyk Z, Swatko-Ossor M, Wysocki W, Drozd M, Ginalska G, Pachuta-Stec A, Pitucha M (2020) New application of 1,2,4-triazole derivatives as antitubercular agents. Structure, In Vitro Screening and Docking Studies. Molecules 25:6033. https://doi.org/10.3390/molecules25246033

  21. Larina LI (2021) Organosilicon azoles: structure, silylotropy and NMR spectroscopy. Adv Heterocycl Chem 133:1–63. https://doi.org/10.1016/bs.aihch.2019.08.001

    Article  Google Scholar 

  22. Gaussian 09, Revision C.01 (2009) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian Inc Wallingford CT

  23. Berne BJ, Tuckerman M, Martyna G (1991) Molecular dynamics algorithm for multiple time scales: systems with long-range forces. J Chem Phys 94:6811. https://doi.org/10.1063/1.460259

    Article  Google Scholar 

  24. González C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527. https://doi.org/10.1021/j100377a021

    Article  Google Scholar 

  25. González C, Schlegel HB (1991) Improved algorithms for reaction path following: higher-order implicit algorithms. J Chem Phys 95:5853–5860. https://doi.org/10.1063/1.461606

    Article  Google Scholar 

  26. Chirkina EA, Larina LI, Komarova TN (2020) Quantum-chemical study of organic reaction mechanisms. IX. The interaction of benzoylacetylene with dithio- and diselenomalonamides. J Organometal Chem 915:1–6. https://doi.org/10.1016/j.jorganchem.2020.121242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Optimization of geometric parameters and calculation of molecular energy were performed by the CCSD(T)/6-31+G*//B3LYP/6-311++G** methods using the GAUSSIAN 09 program [22] at A.E. Favorsky Irkutsk Institute of Chemistry SB RAS on the computing cluster of the Baikal Analytical Center for Collective Use of the SB RAS (http://ckp-rf.ru/ckp/3050/). Experimental NMR results were also obtained with use of the equipment of the Baikal Analytical Centre for Collective Use of the SB RAS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Chirkina Elena and Larina Lyudmila. The first draft of the manuscript was written by Chirkina Elena and Larina Lyudmila commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elena Chirkina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Previous publication: X see [1].

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkina, E., Larina, L. Quantum-chemical study of organic reaction mechanisms. XI.*1 Biologically active 4-substituted 1,2,4-triazoles from diformylhydrazine and aminophenols. Struct Chem 33, 2023–2032 (2022). https://doi.org/10.1007/s11224-022-01969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01969-1

Keywords

Navigation