Skip to main content
Log in

DFT studies on the physicochemical properties of a new potential drug carrier containing cellobiose units and its complex with paracetamol

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The formation of a carrier-drug complex may enhance the biodistribution of the drug and, consequently, improve its therapeutic effect. Since the biodistribution of the tied drug strongly depends on the properties of the carrier molecule, it is advisable to determine its structural features and other physicochemical parameters. Therefore, in this work, the properties of the new potential drug carrier 1,10-N,N’-bis-(β-\(\small{\text{D}}\)-ureidocellobiosyl)-4,7,13-trioxa-1,10-diazacyclopentadecane (L2) were investigated using different quantum chemical methods. The most stable structures obtained from the B3LYP-GD2/6-31G(d,p) calculations have a very compact geometry due to the formation of intramolecular hydrogen bonds between the cellobiose fragments. The Mulliken charge distribution shows that L2 is strongly polar, so it is expected to bind efficiently polar molecules. The complexation ability of the host towards the polar drug paracetamol (PAR) in a stoichiometry 1:1 was investigated for various host-drug structures using the same density functional. The formation of L2:PAR is very profitable: for the most stable configuration, the complexation energy is −18.5 kcal/mol. In all structures, paracetamol is externally attached to the host, interacting mainly with the cellobiose units. The NMR chemical shifts obtained from the quantum calculations for L2 and its complex L2:PAR, are analyzed and compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data generated and analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Li Ch, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y (2019) Recent progress in drug delivery. Acta Pharm Sin B 9:1145–1162

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gujral SS, Khatri S (2013) A review on basic concept of drug targeting and drug carrier system. IJAPBC 2:130–136

    CAS  Google Scholar 

  3. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    CAS  Google Scholar 

  4. Zhang Y, Sun T, Jiang Ch (2018) Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 8:34–50

    Article  PubMed  Google Scholar 

  5. Trucillo P (2021) Drug carriers: classification, administration, release profiles, and industrial approach. Processes 9:470

    Article  CAS  Google Scholar 

  6. Szaniawska M, Szymczyk K (2018) Strategies in poorly soluble drug delivery systems. Annales UMCS Sectio AA 73:81–98

    Google Scholar 

  7. Singh G, Kaur L, Gupta GD (2017) Enhancement of the solubility of poorly water soluble drugs through solid dispersion: a comprehensive review. Indian J Pharm Sci 79:674–687

    CAS  Google Scholar 

  8. Din F, Saleem S, Aleem F, Ahmed R, Huda N, Ahmed S, Khaleeq N, Shah K, Ullah I, Zeb A, Aman W (2018) Advanced colloidal technologies for the enhanced bioavailability of drugs. Cogent Med 5:1480572

    Article  Google Scholar 

  9. Kolluru LP, Atre P, Rizvi SAA (2021) Characterization and applications of colloidal systems as versatile drug delivery carriers for parenteral formulations. Pharmaceuticals 14:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nussbaumer S, Bonnabry P, Veuthey J-L, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85:2265–2289

    Article  CAS  PubMed  Google Scholar 

  11. Alam A, Farooq U, Singh R, Dubey VP, Kumar S, Kumari R, Kumar Naik K, Tripathi BD, Dhar KL (2018) Chemotherapy treatment and strategy schemes: a review. Open Acc J of Toxicol 2:555600

    Google Scholar 

  12. Viegas S, Cebola de Oliveira A, Carolino E, Páuda M (2018) Occupational exposure to cytotoxic drugs: the importance of surface cleaning to prevent or minimise exposure. Arh Hig Rada Toksikol 69:238–249

    Article  CAS  PubMed  Google Scholar 

  13. Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma J, Zhang J, Chi L, Chong L, Li Y, Tian H (2020) Preparation of poly(glutamic acid) shielding micelles self-assembled from polylysine-b-polyphenylalanine for gene and drug codelivery. Chinese Chem Lett 31:1427–1431

    Article  CAS  Google Scholar 

  15. McMahon KM, Foit L, Angeloni NL, Giles FJ, Gordon LI, Thaxton CS (2015) Synthetic high-density lipoprotein-like nanoparticles as cancer therapy. Cancer Treat Res 166:129–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mello SBV, Tavares ER, Bulgarelli A, Bonfá E, Maranhão RC (2013) Intra-articular methotrexate associated to lipid nanoemulsions: anti-inflammatory effect upon antigen-induced arthritis. Int J Nanomed 8:443–449

    Google Scholar 

  17. Honarbakhsh S, Guenther RH, Willoughby JA, Lommel SA, Pourdeyhimi B (2013) Polymeric systems incorporating plant viral nanoparticles for tailored release of therapeutics. Adv Healthcare Mater 2:1001–1007

    Article  CAS  Google Scholar 

  18. Montoto SS, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 7:587997

    Article  CAS  Google Scholar 

  19. Bai H, Wang J, Li Z, Tang G (2019) Macrocyclic compounds for drug and gene delivery in immune-modulating therapy. Int J Mol Sci 20:2097

    Article  CAS  PubMed Central  Google Scholar 

  20. Loftsson T, Jarho P, Másson M, Järvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351

    Article  CAS  PubMed  Google Scholar 

  21. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6:E329–E357

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rahimi M, Karimian R, Noruzi EB, Ganbarov K, Zarei M, Kamounah F, Yousefi B, Bastami M, Yousefi M, Kafil HS (2019) Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells. Int J Nanomed 14:2619–2636

    Article  CAS  Google Scholar 

  23. Zhou Y, Li H, Yang Y-W (2015) Controlled drug delivery systems based on calixarenes. Chinese Chem Lett 26:825–828

    Article  CAS  Google Scholar 

  24. Senthilnathan D, Solomon RV, Kiruthika S, Venuvanalingam P, Sundararajan M (2018) Are cucurbiturils better drug carriers for bent metallocenes? insights from theory. J Biol Inorg Chem 23:413–423

    Article  CAS  PubMed  Google Scholar 

  25. Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23:3319–3329

    Article  CAS  PubMed  Google Scholar 

  26. Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

    Article  CAS  PubMed  Google Scholar 

  27. Bakó P, Rapi Z, Keglevich G (2015) Sugar-based crown ethers in enantioselective syntheses. Per Pol Chem Eng 59:51–58

    Article  Google Scholar 

  28. Orbán I, Bakó P, Rapi Z (2021) Carbohydrate-based azacrown ethers in asymmetric syntheses. Chemistry 3:550–577

    Article  CAS  Google Scholar 

  29. Xie J, Ménand M, Maisonneuve S, Métivier R (2007) Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II). J Org Chem 72:5980–5985

    Article  CAS  PubMed  Google Scholar 

  30. Basok SS, Schepetkin IA, Khlebnikov AI, Lutsyuk AF, Kirichenko TI, Kirpotina LN, Pavlovsky VI, Leonov KA, Vishenkova DA, Quinn MT (2021) Synthesis, biological evaluation, and molecular modeling of aza-crown ethers. Molecules 26:2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Menuel S, Joly J-P, Courcot B, Elysée J, Ghermani NE, Marsura A (2007) Synthesis and inclusion ability of a bis-β-cyclodextrin pseudo-cryptand towards busulfan anticancer agent. Tetrahedron 63:1706–1714

    Article  CAS  Google Scholar 

  32. Porwański S, Dumarcay-Charbonnier F, Menuel S, Joly J-P, Bulach V, Marsura A (2009) Bis-β-cyclodextrinyl- and bis-cellobiosyl-diazacrowns: synthesis and molecular complexation behaviors toward busulfan anticancer agent and two basic aminoacids. Tetrahedron 65:6196–6203

    Article  CAS  Google Scholar 

  33. Pintal M, Kryczka B, Marsura A, Porwański S (2014) Synthesis of bis-cellobiose and bis-glucose derivatives of azacrown macrocycles as hosts in complexes with acetylsalicylic acid and 4-acetamidophenol. Carbohyd Res 386:18–22

    Article  CAS  Google Scholar 

  34. Pintal M, Kryczka B, Porwański S (2015) Stability of the complexes of bis-saccharide crown ethers with p-toluenesulfonamide. Heteroatom Chem 26:161–167

    Article  CAS  Google Scholar 

  35. Winkler A, Messinger H, Bär A (2020) Subchronic (91–day) oral toxicity study of cellobiose in rats. Regul Toxicol Pharmacol 110:104518

    Article  CAS  PubMed  Google Scholar 

  36. Khaled SA, Alexander MR, Irvine DJ, Wildman RD, Wallace MJ, Sharpe S, Yoo J, Roberts CJ (2018) Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech 19:3403–3413

    Article  CAS  PubMed  Google Scholar 

  37. Nersesyan H, Slavin KV (2007) Current approach to cancer pain management: availability and implications of different treatment options. Ther Clin Risk Manag 3(3):381–400

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bührer Ch, Endesfelder S, Scheuer T, Schmitz T (2021) Paracetamol (acetaminophen) and the developing brain. Int J Mol Sci 22:1156

    Article  CAS  Google Scholar 

  39. Cheelo M, Lodge CJ, Dharmage SC, Simpson JA, Matheson M, Heinrich J, Lowe AJ (2015) Paracetamol exposure in pregnancy and early childhood and development of childhood asthma: a systematic review and meta-analysis. Arch Dis Child 100(1):81–89

    Article  CAS  PubMed  Google Scholar 

  40. Popiołek I, Piotrowicz-Wójcik K, Porebski G (2019) Hypersensitivity reactions in serious adverse events reported for paracetamol in the EudraVigilance database, 2007–2018. Pharmacy 7:12

    Article  PubMed Central  Google Scholar 

  41. Mazer M, Perrone J (2008) Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 4:2–6

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tittarelli R, Pellegrini M, Scarpellini MG, Marinelli E, Bruti V, Di Luca NM, Busardò FP, Zaami S (2017) Hepatotoxicity of paracetamol and related fatalities. Eur Rev Med Pharmacol Sci 21:95–101

  43. McCrae JC, Morrison EE, MacIntyre IM, Dear JW, Webb DJ (2018) Long-term adverse effects of paracetamol – a review. Br J Clin Pharmacol 84:2218–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:3–4

    Article  Google Scholar 

  45. Bonovas S, Filioussi K, Sitaras NM (2005) Paracetamol use and risk of ovarian cancer: a meta-analysis. Br J Clin Pharmacol 62:113–121

    Article  PubMed Central  CAS  Google Scholar 

  46. Baandrup L, Friis S, Dehlendorff Ch, Andersen KK, Olsen JH, Kjaer SK (2014) Prescription use of paracetamol and risk for ovarian cancer in Denmark. JNCI J Natl Cancer Inst 106(6):1–5

    Article  CAS  Google Scholar 

  47. Hannibal ChG, Dehlendorff Ch, Kjaer SK (2018) Use of paracetamol, low-dose aspirin, or non-aspirin non-steroidal anti-inflammatory drugs and risk of ovarian borderline tumors in Denmark. Gynecol Oncol 151:513–518

    Article  CAS  PubMed  Google Scholar 

  48. Walter RB, Milano F, Brasky TM, White E (2011) Long-term use of acetaminophen, aspirin, and other nonsteroidal anti-inflammatory drugs and risk of hematologic malignancies: results from the prospective vitamins and lifestyle (VITAL) study. J Clin Oncol 29:2424–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baker JA, Weiss JR, Czuczman MS, Menezes RJ, Ambrosone CB, Moysich KB (2005) Regular use of aspirin or acetaminophen and risk of non-Hodgkin lymphoma. Cancer Causes Control 16:301–308

    Article  PubMed  Google Scholar 

  50. Weiss NS (2016) Use of acetaminophen in relation to the occurrence of cancer: a review of epidemiologic studies. Cancer Causes Control 27:1411–1418

    Article  PubMed  PubMed Central  Google Scholar 

  51. Granberg RA, Rasmuson ÅC (2000) Solubility of paracetamol in binary and ternary mixtures of water + acetone + toluene. J Chem Eng Data 45:478–483

    Article  CAS  Google Scholar 

  52. Dubray C, Maincent P, Milon JY (2021) From the pharmaceutical to the clinical: the case for effervescent paracetamol in pain management. A narrative review. Curr Med Res Opin 37:1039–1048

    Article  CAS  PubMed  Google Scholar 

  53. Porat D, Markovic M, Zur M, Fine-Shamir N, Azran C, Shaked G, Czeiger D, Vaynshtein J, Replyanski I, Sebbag G, Dahan A (2019) Increased paracetamol bioavailability after sleeve gastrectomy: a crossover pre- vs post-operative clinical trial. J Clin Med 8:1949

    Article  CAS  PubMed Central  Google Scholar 

  54. Ignaczak A, Porwański S, Szyszka M (2017) Deeper insight into the properties of the newly synthesized macrocycles as drug receptors – some preliminary quantum chemical studies. New J Chem 41:521

    Article  CAS  Google Scholar 

  55. HyperChem(TM) Professional, version 8.0.10 (2011) Hypercube, Inc.: 1115 NW 4th Street, Gainesville, Florida

  56. Hocquet A, Langgård M (1998) An evaluation of the MM+ force field. J Mol Model 4:94–112

    Article  CAS  Google Scholar 

  57. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S Jr, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  58. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  PubMed  Google Scholar 

  59. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  60. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SJ, Karplus M (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  61. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  62. Kanal IY, Keith JA, Hutchison GR (2018) A sobering assessment of small-molecule force field methods for low energy conformer predictions. Int J Quantum Chem 118:e25512

    Article  CAS  Google Scholar 

  63. MOPAC2016, Stewart JJP (2016) Stewart Computational Chemistry, Colorado Springs, CO, USA, https://OpenMOPAC.net

  64. Guarnieri F, Still WC (1994) A rapidly convergent simulation method: mixed Monte Carlo/Stochastic Dynamics. J Comput Chem 15:1302–1310

    Article  CAS  Google Scholar 

  65. Allouche AR (2011) Gabedit - a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182

    Article  CAS  PubMed  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A03. Gaussian, Inc. Wallingford CT.

  67. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss AL (2001) 6–31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  68. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

  69. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  70. Adamiak M, Porwański S, Ignaczak A (2018) Conformational search and spectroscopic analysis of bis-β-D-glucopyranosyl azacrown derivative. Tetrahedron 74:2166–2173

    Article  CAS  Google Scholar 

  71. Grimme S, Antony J, Ehrlich S, Krieg HA (2010) Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  72. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  PubMed  Google Scholar 

  73. Yu HS, He X, Truhlar DG (2016) MN15-L: a new local exchange-correlation functional for Kohn−Sham density functional theory with broad accuracy for atoms, molecules, and solids. J Chem Theory Comput 12:1280–1293

    Article  CAS  PubMed  Google Scholar 

  74. Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109:5656–5667

    Article  CAS  PubMed  Google Scholar 

  75. Funes-Ardoiz I, Paton RS (2018). GoodVibes: version 2.0.3 (v2.0.3). Zenodo. https://doi.org/10.5281/zenodo.1435820

  76. Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem Eur J 18:9955–9964

    Article  CAS  PubMed  Google Scholar 

  77. Mammen M, Shakhnovich EI, Deutch JM, Whitesides GM (1998) Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid•melamine lattice. J Org Chem 63:3821–3830

    Article  CAS  Google Scholar 

  78. Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract Eur 2:91–104

    Article  CAS  Google Scholar 

  79. Li L, Wu Ch, Wang Z, Zhao L, Li Z, Sun Ch, Sun T (2015) Density functional theory (DFT) and natural bond orbital (NBO) study of vibrational spectra and intramolecular hydrogen bond interaction of l-ornithine–l-aspartate. Spectrochim Acta A 136:338–346

    Article  CAS  Google Scholar 

  80. Nobel NK, Bamba K, Patrice OW, Ziao N (2017) NBO population analysis and electronic calculation of four azopyridine ruthenium complexes by DFT method. J Comput Chem 5:51–64

    Article  CAS  Google Scholar 

  81. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27:789–807

    Article  CAS  Google Scholar 

  82. Tantillo DJ (2019) Chemical shift repository. http://cheshirenmr.info/Instructions.htm/.

  83. Adamiak M, Ignaczak A (2019) Quantum chemical study of the complexation process of bis-β-D-glucopyranosyl diazacrown derivative with aspirin and paracetamol molecules. Comput Theor Chem 1167:112591

    Article  CAS  Google Scholar 

  84. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  85. Jeffrey GA (1997) An Introduction to Hydrogen Bonding. Oxford University Press

    Google Scholar 

  86. Lynam MM, Kuty M, Damborsky J, Koca J, Adriaens P (1998) Molecular orbital calculations to describe microbial reductive dechlorination of polychlorinated dioxins. Environ Toxicol Chem 17:988–997

    Article  CAS  Google Scholar 

  87. Azeez YH, Hekim S, Akpinar S (2019) The theoretical investigation of the HOMO, LUMO energies and chemical reactivity of C9H12 and C7F3NH5Cl molecules. JPCFM 2:28–30

    Google Scholar 

  88. Chaudhary MK, Srivastava A, Singh KK, Tandon P, Joshi BD (2020) Computational evaluation on molecular stability, reactivity, and drug potential of frovatriptan from DFT and molecular docking approach. Comput Theor Chem 1191:113031

    Article  CAS  Google Scholar 

  89. Khan A, Rehman Z, Rehman M, Khan R, Waseem A, Iqbal A, Shah ZH, Zulfiqar (2016) CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorg Chem Commun 72:33–41

    Article  CAS  Google Scholar 

  90. Safia H, Ismahan L, Abdelkrim G, Mouna Ch, Leila N, Fatiha M (2019) Density functional theories study of the interactions between host β-cyclodextrin and guest 8-anilinonaphthalene-1-sulfonate: molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. J Mol Liq 280:218–229

    Article  CAS  Google Scholar 

  91. Abraham RJ, Byrne JJ, Griffiths L, Perez M (2006) 1H chemical shifts in NMR: part 23, the effect of dimethyl sulphoxide versus chloroform solvent on 1H chemical shifts. Magn Reson Chem 44:491–509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DFT calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl), grant No. 443.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Anna Ignaczak. Methodology: Anna Ignaczak and Marta Adamiak. Formal analysis and investigation: Marta Adamiak. Writing, original draft preparation: Marta Adamiak. Writing, review and editing: Anna Ignaczak. Supervision: Anna Ignaczak. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marta Adamiak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamiak, M., Ignaczak, A. DFT studies on the physicochemical properties of a new potential drug carrier containing cellobiose units and its complex with paracetamol. Struct Chem 33, 1365–1378 (2022). https://doi.org/10.1007/s11224-022-01950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01950-y

Keywords

Navigation