Skip to main content
Log in

Insights into solvation, chemical reactivity, structural, vibrational and anti-hypertensive properties of a thiazolopyrimidine derivative by DFT and MD simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, a thiazolopyrimidine derivative ethyl 2-(2-acetoxyphenyl)-5-(4 (benzyloxy) phenyl)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a]pyrimidine-6 carboxylate (EAPC) was investigated experimentally and theoretically. FMOs (frontier molecular orbitals), MEP, ALIE surfaces and solvation free energies were calculated for EAPC at CAM-B3LYP/6–311++G(2d,p) level. Solvation free energies in water, ethanol, acetone, acetonitrile, and chloroform were obtained and the analysis of the energy values suggests that acetone and acetronitrile may be better for solubilization of EAPC. However, the value of solvation energy in water (hydration free energy) indicates good solubility of the studied molecule in an aqueous medium, factor that corroborates the biological activity. Vibrational analysis, together with potential energy distribution (PED) calculations, revealed several characteristic vibrations. Molecular docking and molecular dynamics simulations carreid out with angiotensin I-converting enzyme revealed that EAPC is a promising antihypertensive candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

N/A.

References

  1. de Siqueira LRP, de Moraes Gomes PAT, de Lima Ferreira LP, de Melo Regom MJB, Leite ACL (2019) Multi-target compounds acting in cancer progression: focus on thiosemicarbazone, thiazole and thiazolidinone analogues. European J Med Chem 170:237–260. https://doi.org/10.1016/j.ejmech.2019.03.024

    Article  CAS  Google Scholar 

  2. Heffern MC, Yamamoto N, Holbrook RJ, Eckermann AL, Meade TJ (2013) Cobalt derivatives as promising therapeutic agent, Current Opinion. Chem Biol 17:189–196. https://doi.org/10.1016/j.cbpa.2012.11.019

    Article  CAS  Google Scholar 

  3. Munteanu CR, Suntharalingam K (2015) Advances in cobalt complexes as anticancer agents. Dalton Trans 44:13796–13808. https://doi.org/10.1039/C5DT02101D

    Article  CAS  PubMed  Google Scholar 

  4. Bhardwaj A (2018) A review on azole derivatives as potent anticancer agents, Internatl J Chem Tech Res 11 154–175. https://doi.org/10.20902/IJCTR.2018.111116

  5. Hu Y, Bajorath J (2010) Bajorath, Molecular scaffolds with high propensity to form multi target activity cliffs. J Chem Inf Model 50:500–510. https://doi.org/10.1021/ci100059q

    Article  CAS  PubMed  Google Scholar 

  6. Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361. https://doi.org/10.1016/j.cbpa.2010.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bera P, Aher A, Brandao P, Manna SK, Bhattacharyya I, Pramanik C, Mondal B, Das S, Bera P (2021) Synthesis, structure elucidation and DFT study of a new thiazole-pyridine anchored NNN donor and it’s cobalt(II) complex: in vitro antitumor activity against U937 cancer cells, DNA binding property and molecular docking study. J Mol Struct 1224:129015. https://doi.org/10.1016/j.molstruc.2020.129015

    Article  CAS  Google Scholar 

  8. Lee W, Shin C, Park SE, Joo JM (2019) Regio- and stereoselective synthesis of thiazole containing triarylethylenes by hydroarylation of alkynes. The J Org Chem 84:12913–12924. https://doi.org/10.1021/acs.joc.9b01619

    Article  CAS  PubMed  Google Scholar 

  9. Tomasic T, Katsamakas S, Hodnik Z, Ilas J, Brvar M, Solmajer T, Montalvao S, Tammela P, Banjanac M, Ergovic G, Anderluh M, Masic LP, Kikelj D (2015) Discovery of 4,5,6,7-tetrahydrobenzo[1,2-d]thiazoles as novel DNA gyrase inhibitors targeting the ATP-binding site. J Med Chem 58:5501–5521. https://doi.org/10.1021/acs.jmedchem.5b00489

    Article  CAS  PubMed  Google Scholar 

  10. Wojtas KP, Riedrich M, Lu JY, Winter P, Winkler T, Walter S, Arndt HD (2016) Total synthesis of nosiheptide. Angew Chem Int Ed 55:9772–9776. https://doi.org/10.1002/anie.201603140

    Article  CAS  Google Scholar 

  11. Martin CJ, Minamide M, Dela Cruz Calupitan JP, Asato R, Kuno J, Nakashima T, Rapenne G, Kawai T (2018) Terarylenes as photoactivatable hydride donors. J Org Chem 83:13700–13706. https://doi.org/10.1021/acs.joc.8b01877

  12. Ali SH, Sayed AR (2021) Review of the synthesis and biological activity of thiazoles. Synth Commum 51:670–700

    Article  CAS  Google Scholar 

  13. Haroun M, Tratrat C, Tsolaki E, Geronikaki A (2016) Thiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation, Comb. Chem. High Throughput Screen 19:51–57

  14. Sharma C, Bansal KK, Sharma A, Sharma D, Deep A (2020) Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem 188:112016. https://doi.org/10.1016/j.ejmech.2020.112016

    Article  CAS  PubMed  Google Scholar 

  15. Kohler O, Jarikote DV, Seitz O (2005) Forced intercalation probes (FIT probes): thiazole organe as a fluorescent base in peptide nucleic acids for homogeneous single nucleotide polymorphism detection. ChemBioChem 6(1):69–77. https://doi.org/10.1002/cbic.200400260

    Article  CAS  PubMed  Google Scholar 

  16. Guo X, Zhao B, Fan Z, Yang D, Zhang N, Wu Q, Yu B, Zhou S, Kalinina TA, Belskaya NP (2019) Discovery of novel thiazole carboxamides as antifungal succinate dehydrogenase inhibitors. J Agric Food Chem 67:1647–1655. https://doi.org/10.1021/acs.jafc.8b06935

  17. Chen L, Zhu YJ, Fan ZJ, Guo XF, Zhang ZM, Xu JH, Song YQ, Yurievich MY, Belskaya NP, Bakulev VA (2017) Synthesis of 1,2,3-thiadiazole and thiazole based strobilurins as potent fungicide candidates. J Agric Food Chem 65:745–751. https://doi.org/10.1021/acs.jafc.6b05128

  18. Chen L, Zhao B, Fan Z, Liu X, Wu Q, Li H, Wang H (2018) Synthesis of novel 3,4-chloroisothiazole based imidazoles as fungicides and evaluation of their mode of action. J Agric Food Chem 66:7319–7327. https://doi.org/10.1021/acs.jafc.8b02332

    Article  CAS  PubMed  Google Scholar 

  19. Vicini P, Geronikaki A, Incerti M, Busonera B, Poni G, Cabras AC, Colla LP (2003) Synthesis and biological evaluation of benzo[d ]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg Med Chem 11:4785–4789

    Article  CAS  Google Scholar 

  20. Zitouni GT, Demirayak AO, Kaplancikli ZA, Yildiz TM (2004) Synthesis of some 2-[(benzazol-2-yl)thioacetylamino]thiazole derivatives and their antimicrobial activity and toxicity. Eur J Med Chem 39:267–272

    Article  Google Scholar 

  21. El-Etrawy AA, Sherbiny FF (2020) Design, synthesis, biological assessment and molecular docking studies of new 2-thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. J Mol Struct

  22. Singh IP, Gupta S, Kumar S (2020) Thiazole compounds as antiviral agents: an update. Med Chem 16(1):4–23

    Article  CAS  Google Scholar 

  23. Ma LY, Wang B, Pang LP, Wang SQ, Zheng YC, Shao KP, Xue DQ, Liu HM (2015) Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorg Med Chem Lett 25:1124–1128

    Article  CAS  Google Scholar 

  24. Wang Y, Wu C, Zhang Q, Shan Y, Gu W, Wang S (2019) Design, synthesis and biological evaluation of novel β-pinene-based thiazole derivatives as potential anticancer agents via mitochondrial-mediated apoptosis pathway. Bioorg Chem 84:468–477

    Article  CAS  Google Scholar 

  25. El-Etrawy AS, Sherbiny FF (2021) Design, synthesis, biological assessment and molecular docking studies of new 2-thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. J Mol Struct 1225:129014. https://doi.org/10.1016/j.molstruc.2020.129014

    Article  CAS  Google Scholar 

  26. Nemr MTM, AboulMagd AM (2020) New fused pyrimidine derivatives with anticancer activity: synthesis, topoiosmerase II inhibition, apoptotic inducing activity and molecular modeling. Bioorg Chem 103:104134. https://doi.org/10.1016/j.bioorg.2020.104134

    Article  CAS  PubMed  Google Scholar 

  27. Basiony EA, Hassan AA, Al-Amshany ZM, Abd-Rabou AA, Abdel-Rahman AAH, Hassan NA, El-Sayed WA (2020) Synthesis and cytotoxic activity of new thiazolopyrimidine sugar hydrazones and their derived acyclic nucleoside analogues. Molecules 25:399. https://doi.org/10.3390/molecules25020399

    Article  CAS  PubMed Central  Google Scholar 

  28. Venil K, Lakshmi A, Balachandran V, Narayana B, Salian VV (2020) FT-IR and FT-Raman investigation, quantum chemical analysis and molecular docking studies of 5-(4-propan-2-yl)benzylidene)-2-[3-(4-chlorophenyl)-5-[4-(propan-2-yl)phenyl-4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one. J Mol Struct 1225:129070. https://doi.org/10.1016/j.molstruc.2020.129070

    Article  CAS  Google Scholar 

  29. Al-Rashood ST, Elshahawy S S, El-Qaias AM, El-Behedy DS, Hassanin AA, El-Sayed SM, El-Messery SM, Shaldam MA, Hassan GS (2020) New Thiazolopyrimidine as anticancer agents: Synthesis, biological evalua‐ tion, DNA binding, Molecular modeling and ADMET study. Bioorganic Med. Chem. Lett. 30:127611. https://doi.org/10.1016/j.bmcl.2020.127611

  30. Al-Abdullah ES, Mary YS, Panicker CY, El-Brollosy NR, El-Emam AA, Van Alsenoy C, Al-Saadi AA (2014) Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO analyses and NBO study of 1-[(cyclopropylmethoxy)_methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione. Spectrochim Acta 133:639–650. https://doi.org/10.1016/j.saa.2014.06.042

    Article  CAS  Google Scholar 

  31. Alzoman NZ, Mary YS, Panicker CY, Al-Swaidan IA, El-Emam AA, Al-Deeb OA, Al-Saadi AA, Van Alsenoy C, War JA (2015) Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 2-](4-chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)-pyrimidine-5-carbonitrile, a potential chemotherapeutic agent. Spectrochim. Acta 139:413–424. https://doi.org/10.1016/j.saa.2014.12.043

  32. Devi AS, Aswathy VV, Mary YS, Panicker CY, Armakovic S, Armakovic SJ, Ravindran R, Van Alsenoy C (2017) Synthesis, XRD single crystal structure analysis, vibrational spectral analysis, molecular dynamics and molecular docking studies of 2-(3-methoxy-4-hydroxyphenyl)benzothiazole. J Mol Struct 1148:282–292. https://doi.org/10.1016/j.molstruc.2017.07.065

    Article  CAS  Google Scholar 

  33. Al-Omary FAM, Mary YS, Beegum S, Panicker CY, Al-Shehri MM, El-Emam AA, Armakovic S, Armakovic SJ, Van Alsenoy C (2017) Moleclar conformational analysis, reactivity, vibrational spectral analysis and molecular dynamics and docking studies of 6-chloro—5-isopropylpyrimidine-2,4(1H,3H)-dione, a potential precursor to bioactive agent. J Mol Struct 1127:427–436. https://doi.org/10.1016/j.molstruc.2016.07.120

    Article  CAS  Google Scholar 

  34. Bernstein KE, Ong FS, Blackwell W-LB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM (2012) A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 65:1–46. https://doi.org/10.1124/pr.112.006809

    Article  CAS  PubMed  Google Scholar 

  35. Smitha M, Mary YS, Mary YS, Serdaroglu G, Chowdhury P, Rana M, Umamahesvari H, Sarojini BK, Mohan BJ, Pavithran R (2021) Modeling the DFT structural and reactivity studies of a pyrimidine-6-carboxylate derivative with reference to its wavefunction-dependent, MD simulations and evaluation for potential antimicrobial activity. J Mol Struct 1237:130397. https://doi.org/10.1016/j.molstruc.2021.130397

    Article  CAS  Google Scholar 

  36. Mary YS, Mary YS, Serdaroglu G, Kaya S, Sarojini BK, Umamahesvari H, Mohan BJ (2021) Conformational analysis, spectroscopic insights, chemical descriptors, ELF, LOL and molecular docking studies of potential pyrimidine derivative with biological activities. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2021.1924803

    Article  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J (2009) Gaussian 09, Revision D.01Wallingford CT

  38. Martin JML, Van Alsenoy C (2007) GAR2PED, a Program to obtain a potential energy distribution from a Gaussian Archive record. University of Antwerp, Belgium

    Google Scholar 

  39. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

  40. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  41. Abraham MJ, van der Spoel D, Lindahl E, Hess B (2019) GROMACS development team, GROMACS User Manual Version 4. http://www.gromacs.org

  42. Berendsen HJC, Postma JPM, vanGunsteren WF, DiNola A, Haa JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

  43. Gangadharappa BS, Sharath R, Revansiddappa PD, Chandramohan V, Balasubramaniam M, Vardhineni TP (2020) Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. J Biolmol Struct Dyn 38:3757–3771. https://doi.org/10.1080/07391102.2019.1667265

    Article  CAS  Google Scholar 

  44. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L (2000) Cheatham Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889

  45. Kumari R, Kumar R (2014) g-mmpbsa—a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  46. Costa RA, da Silva JN, Oliveira KMT, Dutra LM, Costa EV (2020) Quantum chemical studies, vibrational analysis, molecular dynamics and docking calculations of some ent-kaurane diterpenes from Annona vepretorum: a theoretical approach to promising anti-tumor molecules. Struc Chem 31:1223–1243. https://doi.org/10.1007/s11224-020-01491-2

    Article  CAS  Google Scholar 

  47. Mary YS, Panicker CY, Anto PL, Sapnakumari M, Narayana B, Sarojini BK (2015) Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-dichlorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one by HF and density functional methods. Spectrochim Acta 135:81–92. https://doi.org/10.1016/j.saa.2014.06.140

    Article  CAS  Google Scholar 

  48. Resmi KS, Haruna K, Mary YS, Panicker CY, Saleh TA, Al-Saadi AA, Van Alsenoy C (2016) Conformational, NBO, NLO, HOMO-LUMO, NMR, electronic spectral study and molecular docking study of N, N-dimethyl-3-(10H-phenothiazin-10-yl)-1-propanamine. J Mol Struct 1122:268–279. https://doi.org/10.1016/j.molstruc.2016.06.006

    Article  CAS  Google Scholar 

  49. Ullah Z, Kim K, Venkanna A, su Kim H, Kim MI, Kim MH (2021) Plausible pnicogen bonding of epi-Cinchonidine as a chiral scaffold in catalysis. Front Chem 9:669515

  50. Ullah Z, Sonawane PM, Nguyen TS, Garai M, Churchill DG (2021) Bisphenol–based cyanide sensing: selectivity, reversibility, facile synthesis, bilateral ‘‘OFF-ON” fluorescence, C2m structural and conformational analysis. Spectrochim Acta A Mol Biomol Spectrosc 259:119881

  51. Sattar FI, Ullah Z, Rahman AU, Raul A, Tariq M, Tahir AA, Ayub K, Ullah H (2015) Phytochemical, spectroscopic and density functional theory study of Diospyrin, and non-bonding interactions of Diospyrin with atmospheric gases. Spectrochim Acta A Mol Biomol Spectrosc 141:71–79

  52. Parr R, Pearson G (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  53. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

  54. Parr RG, Weitao Y (1994) Density-functional theory of atoms and molecules. Oxford University Press

  55. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry Org. Biomol Chem 9:7168–7175. https://doi.org/10.1039/C10B05856H

    Article  CAS  Google Scholar 

  56. Gazquez JL, Cedillo A, Vela A (2007) Electron donating and electron accepting powers. J Phys Chem A 111:1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  57. Frau J, Muñoz F, Glossman-Mitnik D (2017) Application of DFT concepts to the study of the chemical reactivity of some resveratrol derivatives through the assessment of the validity of the “Koopmans in DFT” (KID) procedure. J Theor Comp Chem 16:1750006. https://doi.org/10.1142/S0219633617500067

    Article  CAS  Google Scholar 

  58. Ullah Z, Rahman AU, Sattar FI, Rauf A, Yassen M, Hassan W, Tariq M, Ayub K, Tahir AA, Ullah H (2015) Density functional theory and phytochemical study of 8-hydroxyisodiospyrin. J Mol Struct 1095:69–78

  59. Costa RA, Barros GA, da Silva JN, Oliveira KM, Bezerra DP, Soares MBP, Costa EV (2021) Experimental and theoretical study on spectral features, reactivity, solvation, topoisomerase I inhibition and in vitro cytotoxicity in human HepG2 cells of guadiscine and guadiscidine aporphine alkaloids. J Mol Struct 1229:129844. https://doi.org/10.1016/j.molstruc.2020.129844

    Article  CAS  Google Scholar 

  60. Costa RA, da Silva JN, Oliveira VG, Anselmo LM, Araujo MM, Oliveira KMT, Nunomura RCS (2021) New insights into structural, electronic, reactivity, spectroscopic and pharmacological properties of bergenin: experimental, DFT calculations, MD and docking simulations. J Mol Liq 330:115625. https://doi.org/10.1016/j.molliq.2021.115625

    Article  CAS  Google Scholar 

  61. Shahaba S, Sheikhi M (2020) Antioxidant properties of the phorbol: a DFT approach. Russian J Physl Chem B 14:15–18. https://doi.org/10.1134/S199079312001045

    Article  Google Scholar 

  62. Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes. J Phys Chem 94:3959–3961. https://doi.org/10.1021/j100373a017

    Article  CAS  Google Scholar 

  63. Weiner PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Electrostatic potential molecular surfaces. PNAS 79:3754–3758. https://doi.org/10.1073/pnas.79.12.3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Orozco M, Luque FJ (1996) Generalization of the molecular electrostatic potential for the study of noncovalent interactions. Theoretical and Computational Chemistry 3:181–218. https://doi.org/10.1016/S1380-7323(96)800044-6

    Article  CAS  Google Scholar 

  65. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  66. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. https://doi.org/10.1021/ja00326a036

    Article  CAS  Google Scholar 

  67. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018. https://doi.org/10.1021/ja9924039

    Article  CAS  Google Scholar 

  68. Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212. https://doi.org/10.1021/jp046577a

    Article  CAS  PubMed  Google Scholar 

  69. Martínez-Araya JI (2015) Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J Math Chem 53:451–465. https://doi.org/10.1007/s10910-014-0437-7

    Article  CAS  Google Scholar 

  70. Matos GDR, Kyu DY, Loeffler HH, Chodera JD, Shirts MR, Mobley DL (2017) Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the FreeSolv database. J Chem Eng Data 62:1559–1569. https://doi.org/10.1021/acs.jced.7b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2010) Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aided Mol Des 24:317–333. https://doi.org/10.1007/s10822-010-9333-9

    Article  CAS  PubMed  Google Scholar 

  72. Mirzaei S, Ivanov MV, Timerghazin QK (2019) J Phys Chem A 123:9498–9504. https://doi.org/10.1021/acs.jpca.9b02340

    Article  CAS  PubMed  Google Scholar 

  73. Saielli G (2010) Differential solvation free energies of oxonium and ammonium ions: insights from quantum chemical calculations. J Phys Chem A 114:7261–7265. https://doi.org/10.1021/jp103783j

    Article  CAS  PubMed  Google Scholar 

  74. Natesh R, Schwager SLU, Evans HR, Sturrock ED, Acharya KR (2004) Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochem 43:8718–8724

    Article  CAS  Google Scholar 

  75. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mary YS, Mary YS, Rad AS, Yadav R, Celik I, Sarala S (2021) Theoretical investigation on the reactive and interaction properties of sorafenib-DFT, AIM, spectroscopic and Hirshfeld analysis, docking and dynamics simulation. J Mol Liq 330:115652. https://doi.org/10.1016/j.molliq.2021.115652

    Article  CAS  Google Scholar 

  77. Sivaramakrishnan M, Kandaswamy K, Natesan S, Devarajan RD, Ramakris SG, Kothandan R (2020) Molecular docking and dynamics studies on plasmepsin V of malarial parasite Plasmodium vivax. Inform Med Unlocked 19:100331

  78. Mary YS, Mary YS, Resmi KS, Sarala S, Yadav R, Celik I (2021) Modeling the structural and reactivity properties of hydrazono methyl-4H-chromen-4-one derivatives-wavefunction-dependent properties, molecular docking, and dynamics simulation studies. J Mol Model 27:186. https://doi.org/10.1007/s00894-021-04800-6

    Article  CAS  PubMed  Google Scholar 

  79. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 10:e0119264

  80. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project of Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

This work was financially supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant number PNURSP2022R13).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Synthesis of the compound, fund acquisition, data collection, docking calculations, and first writing were performed by Jamelah S.Al-Otaibi. DFT calculations, optimization of structures, review, and editing were performed by Renyer A. Costa, Victor L. Tananta, and Emmanoel V. Costa. Molecular docking, molecular dynamic calculations, spectroscopic analysis, writing, and supervision were performed by Y. Sheena Mary and Y. Shyma Mary. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jamelah S. Al-Otaibi or Renyer Alves Costa.

Ethics declarations

Ethics approval

We declare that this manuscript is original, that it was written by the authors, and has not been published elsewhere. This study is not divided into other parts. The article reflects the research and analysis of the authors themselves truthfully and completely.

Consent to participate

All the authors consent to participate in this research.

Consent for publication

All authors agreed and approved this version of the article. All authors were responsible for ensuring the accuracy and integrity of all aspects of this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 679 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Otaibi, J.S., Costa, R.A., Costa, E.V. et al. Insights into solvation, chemical reactivity, structural, vibrational and anti-hypertensive properties of a thiazolopyrimidine derivative by DFT and MD simulations. Struct Chem 33, 1271–1283 (2022). https://doi.org/10.1007/s11224-022-01931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01931-1

Keywords

Navigation