Skip to main content
Log in

Molecular docking/dynamic simulations, MEP, ADME-TOX-based analysis of xanthone derivatives as CHK1 inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

CHK1 is a promising molecular target that gained immense attention recently for the development of cancer therapeutics. In this study, a simulation-based investigation was conducted to examine the CHK1 inhibitory activity of cytotoxic xanthone derivatives using a hierarchical workflow for molecular docking, MD simulation, ADME-TOX prediction, and MEP analysis. A molecular docking study was conducted for the forty-three xanthone derivatives along with standard prexasertib into the selected CHK1 protein structures 7AKM and 7AKO. Eight top hits were identified based on their free energy scores, namely L43, L42, L41, L40, L36, L33, L31, and L30, which showed better binding affinity (from − 8.22 to − 8.08 kcal/mol) (from − 8.14 to − 7.9 kcal/mol) toward 7AKM and 7AKO, respectively than the reference prexasertib which emphasizes the validity of our strategy. Furthermore, MD studies support molecular docking results and validate the stability of studied complexes in physiological conditions. These findings confirm that the selected eight xanthones are verifiable CHK1 inhibitors implying a good correlation between in silico and in vitro studies. Moreover, in silico ADME-TOX studies are used to predict the pharmacokinetic, pharmacodynamic, and toxicological properties of the studied eight hits and the standard prexasertib. Indeed, L36 showed the best ADME-TOX profile as it was the only hit without hepatotoxicity among the studied compounds. Besides, it displayed superior binding affinity and satisfied Lipinski, Pfizer, and golden triangle rules indicating a potent drug candidate. The quantitative analysis of electrostatic potential was performed for L36 to identify the reactive sites and possible non-covalent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Schuler F, Weiss JG, Lindner SE et al (2017) Checkpoint kinase 1 is essential for normal B cell development and lymphomagenesis. Nat Commun 8:1697. https://doi.org/10.1038/s41467-017-01850-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang Y, Hunter T (2014) Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 134:1013–1023. https://doi.org/10.1002/ijc.28226

    Article  CAS  PubMed  Google Scholar 

  3. Chen Z, Xiao Z, Gu W et al (2006) Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int J Cancer 119:2784–2794. https://doi.org/10.1002/ijc.22198

    Article  CAS  PubMed  Google Scholar 

  4. Tao Z-F, Lin N-H (2006) Chk1 inhibitors for novel cancer treatment. ACAMC 6:377–388. https://doi.org/10.2174/187152006777698132

    Article  CAS  Google Scholar 

  5. Klomp JE, Lee YS, Goodwin CM et al (2021) CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Rep 37:110060. https://doi.org/10.1016/j.celrep.2021.110060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sen T, Tong P, Stewart CA et al (2017) CHK1 Inhibition in small-cell lung cancer produces single-agent activity in biomarker-defined disease subsets and combination activity with cisplatin or olaparib. Cancer Res 77:3870–3884. https://doi.org/10.1158/0008-5472.CAN-16-3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng L, Beggs RR, Cooper TS et al (2017) Combining Chk1/2 inhibition with cetuximab and radiation enhances in vitro and in vivo cytotoxicity in head and neck squamous cell carcinoma. Mol Cancer Ther 16:591–600. https://doi.org/10.1158/1535-7163.MCT-16-0352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brill E, Yokoyama T, Nair J et al (2017) Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 8:111026–111040. https://doi.org/10.18632/oncotarget.22195

  9. Jagtap P, Szabó C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440. https://doi.org/10.1038/nrd1718

    Article  CAS  PubMed  Google Scholar 

  10. Nourisefat M, Salehi N, Yousefinejad S et al (2019) Biological evaluation of 9-(1H-Indol-3-yl) xanthen-4-(9H)-ones derivatives as noncompetitive α-glucosidase inhibitors: kinetics and molecular mechanisms. Struct Chem 30:703–714. https://doi.org/10.1007/s11224-018-1218-x

    Article  CAS  Google Scholar 

  11. Kurniawan YS, Priyangga KTA, Jumina et al (2021) An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals 14:1144. https://doi.org/10.3390/ph14111144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang J, Liu RH, Halim L (2009) Antioxidant and antiproliferative activities of common edible nut seeds. LWT Food Sci Technol 42:1–8. https://doi.org/10.1016/j.lwt.2008.07.007

    Article  CAS  Google Scholar 

  13. Shan T, Ma Q, Guo K et al (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. CMM 11:666–677. https://doi.org/10.2174/156652411797536679

    Article  CAS  Google Scholar 

  14. Santos CMM, Freitas M, Fernandes E (2018) A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 157:1460–1479. https://doi.org/10.1016/j.ejmech.2018.07.073

    Article  CAS  PubMed  Google Scholar 

  15. Kang H-H, Zhang H-B, Zhong M-J et al (2018) Potential antiviral xanthones from a coastal saline soil fungus aspergillus iizukae. Mar Drugs 16:449. https://doi.org/10.3390/md16110449

    Article  CAS  PubMed Central  Google Scholar 

  16. Araújo J, Fernandes C, Pinto M, Tiritan M (2019) Chiral derivatives of xanthones with antimicrobial activity. Molecules 24:314. https://doi.org/10.3390/molecules24020314

    Article  CAS  PubMed Central  Google Scholar 

  17. Peng X, Sun F, Li G et al (2021) New xanthones with antiagricultural fungal pathogen activities from the endophytic fungus Diaporthe goulteri L17. J Agric Food Chem 69:11216–11224. https://doi.org/10.1021/acs.jafc.1c03513

    Article  CAS  PubMed  Google Scholar 

  18. Cruz MI, Cidade H, Pinto M (2017) Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med Chem 9:1611–1630. https://doi.org/10.4155/fmc-2017-0086

    Article  CAS  PubMed  Google Scholar 

  19. Aye A, Song Y-J, Jeon Y-D, Jin J-S (2020) Xanthone suppresses allergic contact dermatitis in vitro and in vivo. Int Immunopharmacol 78:106061. https://doi.org/10.1016/j.intimp.2019.106061

    Article  CAS  PubMed  Google Scholar 

  20. Sun J, Chu Y-F, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449–7454. https://doi.org/10.1021/jf0207530

    Article  CAS  PubMed  Google Scholar 

  21. Kritsanawong S, Innajak S, Imoto M, Watanapokasin R (2016) Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int J Oncol 48:2155–2165. https://doi.org/10.3892/ijo.2016.3399

    Article  CAS  PubMed  Google Scholar 

  22. Jittiporn K, Suwanpradid J, Patel C et al (2014) Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative α-mangostin. Microvasc Res 93:72–79. https://doi.org/10.1016/j.mvr.2014.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Tan Y, Zhao L et al (2020) Anticancer activity of dietary xanthone α-mangostin against hepatocellular carcinoma by inhibition of STAT3 signaling via stabilization of SHP1. Cell Death Dis 11:63. https://doi.org/10.1038/s41419-020-2227-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang K, Gu Q, Yang K et al (2016) Anticarcinogenic effects of α-mangostin: a review. Planta Med 83:188–202. https://doi.org/10.1055/s-0042-119651

    Article  CAS  PubMed  Google Scholar 

  25. Lee HN, Jang HY, Kim HJ et al (2016) Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells. Int J Mol Med 37:939–948. https://doi.org/10.3892/ijmm.2016.2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu L, Guo H, Sun H et al (2016) UNC119 mediates gambogic acid-induced cell-cycle dysregulation through the Gsk3β/β-catenin pathway in hepatocellular carcinoma cells. Anticancer Drugs 27:988–1000. https://doi.org/10.1097/CAD.0000000000000416

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Bao H, Wang H et al (2019) Synthesis of xanthone derivatives and anti-hepatocellular carcinoma potency evaluation: induced apoptosis. RSC Adv 9:40781–40791. https://doi.org/10.1039/C9RA06408G

    Article  CAS  Google Scholar 

  28. Rong J-J, Hu R, Song X-M et al (2010) Gambogic acid triggers DNA damage signaling that induces p53/p21Waf1/CIP1 activation through the ATR-Chk1 pathway. Cancer Lett 296:55–64. https://doi.org/10.1016/j.canlet.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  29. Rasool N, Majeed A, Riaz F, Hussain W (2020) Identification of novel inhibitory candidates against two major Flavivirus pathogens via CADD protocols: in silico analysis of phytochemical binding, reactivity, and pharmacokinetics against NS5 from ZIKV and DENV. Struct Chem 31:2189–2204. https://doi.org/10.1007/s11224-020-01577-x

    Article  CAS  Google Scholar 

  30. Druker BJ, Tamura S, Buchdunger E et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566. https://doi.org/10.1038/nm0596-561

    Article  CAS  PubMed  Google Scholar 

  31. Li YY, An J, Jones SJM (2011) A computational approach to finding novel targets for existing drugs. PLoS Comput Biol 7:e1002139. https://doi.org/10.1371/journal.pcbi.1002139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui JJ, Tran-Dubé M, Shen H et al (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal–epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363. https://doi.org/10.1021/jm2007613

    Article  CAS  PubMed  Google Scholar 

  33. Nagpal N, Goyal S, Dhanjal JK et al (2017) Molecular dynamics-based identification of novel natural mortalin–p53 abrogators as anticancer agents. J Recept Signal Transduction 37:8–16. https://doi.org/10.3109/10799893.2016.1141952

    Article  CAS  Google Scholar 

  34. Park S, Hong E, Kwak SY et al (2016) Synthesis and biological evaluation of C1- O -substituted-3-(3-butylamino-2-hydroxy-propoxy)-xanthen-9-one as topoisomerase IIα catalytic inhibitors. Eur J Med Chem 123:211–225. https://doi.org/10.1016/j.ejmech.2016.07.046

    Article  CAS  PubMed  Google Scholar 

  35. Day M, Parry-Morris S, Houghton-Gisby J et al (2021) Structural basis for recruitment of the CHK1 DNA damage kinase by the CLASPIN scaffold protein. Structure 29:531–539.e3. https://doi.org/10.1016/j.str.2021.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clément G, Slenzka K (2006) Fundamentals of space biology: research on cells, animals, and plants in space. Springer, New York, New York, NY

    Book  Google Scholar 

  37. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364. https://doi.org/10.1002/prot.340120407

    Article  CAS  PubMed  Google Scholar 

  38. Molecular Operating Environment (MOE) (2014) Chemical Computing Group Inc, 1010 Sherbrooke St. West, Suite # 910, Montreal QC, Canada H3A 2R7

  39. Daoud I, Mesli F, Melkemi N et al (2021) Discovery of potential SARS-CoV 3CL protease inhibitors from approved antiviral drugs using: virtual screening, molecular docking, pharmacophore mapping evaluation and dynamics simulation. J Biomol Struct Dyn 1–18. https://doi.org/10.1080/07391102.2021.1973563

  40. Belkadi A, Kenouche S, Melkemi N et al (2021) K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct Chem 32:2235–2249. https://doi.org/10.1007/s11224-021-01796-w

    Article  CAS  Google Scholar 

  41. Djebaili R, Melkemi N, Kenouche S et al (2021) Combined conceptual-DFT, quantitative MEP analysis, and molecular docking study of benzodiazepine analogs. Orbital: Electron J Chem 13:301–315. https://doi.org/10.17807/orbital.v13i4.1607

  42. MarvinSketch (2019) ChemAxon. http://www.chemaxon.com/products/marvin/marvinsketch/. Accessed 16 Jul 2019

  43. HyperChem v8 (2009) Molecular Modeling System, Hypercube Inc, 1115 NW 4th Street, Gainesville, FL 32601, USA

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT

  45. Chenafa H, Mesli F, Daoud I et al (2021) In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modelling. J Biomol Struct Dyn 1–22. https://doi.org/10.1080/07391102.2021.1882340

  46. Daoud I, Melkemi N, Salah T, Ghalem S (2018) Combined QSAR, molecular docking and molecular dynamics study on new acetylcholinesterase and butyrylcholinesterase inhibitors. Comput Biol Chem 74:304–326. https://doi.org/10.1016/j.compbiolchem.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  47. Bond SD, Leimkuhler BJ, Laird BB (1999) The Nosé-Poincaré method for constant temperature molecular dynamics. J Comput Phys 151:114–134. https://doi.org/10.1006/jcph.1998.6171

    Article  CAS  Google Scholar 

  48. Sturgeon JB, Laird BB (2000) Symplectic algorithm for constant-pressure molecular dynamics using a Nosé-Poincaré thermostat. J Chem Phys 112:3474–3482. https://doi.org/10.1063/1.480502

    Article  CAS  Google Scholar 

  49. Parikesit AA, zahroh H, Nugroho AS et al (2015) The computation of cyclic peptide with prolin-prolin bond as fusion inhibitor of DENV envelope protein through molecular docking and molecular dynamics simulation. arXiv:151101388 [q-bio]. https://doi.org/10.13140/2.1.4133.3760

  50. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  51. Origin (Pro) (6.0) (1999) OriginLab Corporation, Northampton, MA, USA

  52. Bolz SN, Adasme MF, Schroeder M (2021) Toward an understanding of pan-assay interference compounds and promiscuity: a structural perspective on binding modes. J Chem Inf Model 61:2248–2262. https://doi.org/10.1021/acs.jcim.0c01227

    Article  CAS  PubMed  Google Scholar 

  53. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  54. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiong G, Wu Z, Yi J et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:W5–W14. https://doi.org/10.1093/nar/gkab255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  58. Murray JS, Brinck T, Lane P et al (1994) Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF). J Mol Struct (Thoechem) 307:55–64. https://doi.org/10.1016/0166-1280(94)80117-7

    Article  Google Scholar 

  59. Imberty A, Hardman KD, Carver JP, Perez S (1991) Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1:631–642. https://doi.org/10.1093/glycob/1.6.631

    Article  CAS  PubMed  Google Scholar 

  60. Hong D, Infante J, Janku F et al (2016) Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. JCO 34:1764–1771. https://doi.org/10.1200/JCO.2015.64.5788

    Article  CAS  Google Scholar 

  61. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs ComputMolSci 1:153–163. https://doi.org/10.1002/wcms.19

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Data collection, software, formal analysis, and first draft of the manuscript were prepared by Ahlem Belkadi. All authors commented on previous versions of the manuscript. MEP analysis was performed by Samir Kenouche. Nadjib Melkemi contributed to the conceptualization and supervision of the study. Ismail Daoud and Rachida Djebaili contributed to the interpretation of docking and dynamics studies. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ahlem Belkadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkadi, A., Kenouche, S., Melkemi, N. et al. Molecular docking/dynamic simulations, MEP, ADME-TOX-based analysis of xanthone derivatives as CHK1 inhibitors. Struct Chem 33, 833–858 (2022). https://doi.org/10.1007/s11224-022-01898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01898-z

Keywords

Navigation