Skip to main content
Log in

In vitro antioxidant activities of five β-carboline alkaloids, molecular docking, and dynamic simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Experimental and computational studies were performed to determine the antioxidant activities of harmine, harmaline, harmalol, harmane, and 1,2,3,4-tetrahydroharmane-3-carboxylic acid. The in vitro study was conducted using H2O2, ABTS, FRAP and PR tests. The theoretical study was performed using density functional theory (DFT), molecular docking, and molecular dynamics. The in vitro study showed high hydrogen peroxide scavenging activity 27.63 ± 1.74% for harmine which is significantly greater than ascorbic acid (8.02 ± 0.58%). Harmalol has shown the highest antioxidant activity for ABTS, FRAP, and reducing power with 371.15 ± 1.80 µg TE/mg, 11.30 ± 0.01 µg TE/mg, and 671.70 ± 5.11 µg AAE/mg, respectively. DFT analysis indicates that harmalol and harmaline are the most reactive molecules and could scavenge free radicals through the SET-PT mechanism. The docking analysis revealed that harmalol and harmaline have low binding energy and interact through hydrogen and van der Waals bonds with the myeloperoxidase receptor. In addition, molecular dynamics revealed that the protein–ligand equilibrium is stable after 100,000 fs, indicating that harmaline and harmalol could be inhibitors of myeloperoxidase. The obtained results were used to design new harmalol derivative, with promising in silico results. The results of this work showed that harmalol and harmaline have high antioxidant activity in vitro and in silico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All experimental data were included in the article.

Code availability

Not applicable.

Abbreviations

H2O2 :

Hydrogen peroxide scavenging

ABTS:

Radical Trolox equivalent antioxidant capacity cation-decolorization

FRAP:

Ferric reducing-antioxidant power

RP:

Reducing power

ADME/Tox:

Absorption, distribution, metabolism, excretion, and toxicity

B3LYP:

Becke 3-Parameter, Lee, Yang and Parr

BDE (N–H):

N–H bond dissociation enthalpy

DFT:

Density functional theory

EA:

Electron affinity

EHOMO:

Highest occupied molecular orbital energy

ELUMO:

Lowest unoccupied molecular orbital energy

ETE:

Electron transfer enthalpy

IP:

Ionization potential

MD:

Molecular dynamics

MMFF94:

Merck molecular force field

MPO:

Myeloperoxidase

PA:

Proton affinity

PDE:

Proton dissociation enthalpy

RMSD:

Root mean standard deviation

S:

Softness

THCA:

1,2,3,4-Tetrahydroharmane-3-carboxylic acid

ƞ:

Hardness

µ:

Chemical potential

χ:

Electronegativity

ω:

Electrophilic index

References

  1. Harman D (1994) Free radical theory of aging. increasing the functional life span. Ann N Y Acad Sci 717:1–15. https://doi.org/10.1111/j.1749-6632.1994.tb12069.x

    Article  CAS  PubMed  Google Scholar 

  2. Simonian NY, Coyle JT (1996) Oxidative stress in neurodegenerative disease. Annu Rev Pharmacol Toxicol 36:83–106. https://doi.org/10.1146/annurev.pa.36.040196.000503

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview Methods. Enzymol 186:1–85. https://doi.org/10.1016/0076-6879(90)86093-b

    Article  CAS  Google Scholar 

  4. Tse SY, Mak IT, Dickens BF (1991) Antioxidative properties of harmane and beta-carboline alkaloids. Biochem Pharmacol 42:459–464. https://doi.org/10.1016/0006-2952(91)90305-o

    Article  CAS  PubMed  Google Scholar 

  5. Cho IS, Shin YK, Lee CS (1995) Effects of harmaline and harmalol on the oxidative injuries of hyaluronic acid, lipid and collagen by Fe2þ and H2O2. Korean J Pharmacol 31:345–353

    CAS  Google Scholar 

  6. Kim HH, Jang YY, Han ES, Lee CS (1999) Differential antioxidant effects of ambroxol, rutin, glutathione and harmaline. J Appl Pharmacol 7:112–120

    Google Scholar 

  7. Prashanth D, John S (1999) Antibacterial activity of Peganum harmala. Fitoterapia 70:438–439

    Article  Google Scholar 

  8. Cao R, Peng W, Wang Z, Xu A (2007) Beta-carboline alkaloids: biochemical and pharmacological functions. Curr Med Chem 14:479–500. https://doi.org/10.2174/092986707779940998

    Article  CAS  PubMed  Google Scholar 

  9. Astulla A, Zaima K, Matsuno Y, Hirasawa Y, Ekasari W, Widyawaruyanti A, Zaini NC, Morita H (2008) Alkaloids from the seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities. J Nat Med 62:470–472. https://doi.org/10.1007/s11418-008-0259-7

    Article  CAS  PubMed  Google Scholar 

  10. Farouk L, Laroubi A, Aboufatima R, Benharref A, Chait A (2008) Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved. J Ethnopharmacol 115:449–454. https://doi.org/10.1016/j.jep.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Abdel-Fattah AF, Matsumoto K, Gammaz HA, Watanabe H (1995) Hypothermic effect of harmala alkaloid in rats: involvement of serotonergic mechanism. Pharmacol Biochem Behav 52:421–426. https://doi.org/10.1016/0091-3057(95)00131-f

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Jiang X, Zhao M, Zhang X, Zheng M, Peng L, Peng S (2010) A class of 3S–2-aminoacyltetrahydro–carboline-3-carboxylic acids: their facile synthesis, inhibition for platelet activation, and high in vivo anti-thrombotic potency. J Med Chem 53(8):3106–3116. https://doi.org/10.1021/jm901816j

    Article  CAS  PubMed  Google Scholar 

  13. Monsef HR, Ghobadi A, Iranshahi M, Abdollahi M (2004) Antinociceptive effects of Peganum harmala L. alkaloid extract on mouse formalin test. J Pharm Pharm Sci 7:65–69

    CAS  PubMed  Google Scholar 

  14. Mahmoudian M, Jalilpour H, Salehian P (2002) Toxicity of Peganum harmala: review and a case report. IJPT 1:1–4

    Google Scholar 

  15. Lamchouri F, Settaf A, Cherrah Y, Zemzami M, Lyoussi B, Zaid A, Atif N, Hassar M (1999) Antitumour principles from Peganum harmala seeds. Therapie 54:753–758

    CAS  PubMed  Google Scholar 

  16. Lamchouri F, Settaf A, Cherrah Y, Hassar M, Zemzami M, Atif N, Nadori EB, Zaid A, Lyoussi B (2000) In vitro cell-toxicity of Peganum harmala alkaloids on cancerous cell-lines. Fitoterapia 71:50–54. https://doi.org/10.1016/S0367326X(99)001173

    Article  CAS  PubMed  Google Scholar 

  17. Lamchouri F, Zemzami M, Jossang A, Abdellatif A, Israili ZH, Lyoussi B (2013) Cytotoxicity of alkaloids isolated from Peganum harmala seeds. Pak J Pharm Sci 26:699–706

    CAS  PubMed  Google Scholar 

  18. Lamchouri F, Toufik H, Bouzzine SM, Hamidi M, Bouachrine M (2010) Experimental and computational study of biological activities of alkaloids isolated from Peganum harmala seeds. J Mater Environ Sci 1:343–352

    CAS  Google Scholar 

  19. Lamchouri F, Toufik H, Elmalki Z, Bouzzine SM, Ait Malek H, Hamidi M, Bouachrine M (2013) Quantitative structure–activity relationship of antitumor and neurotoxic β-carbolines alkaloids: nine harmine derivatives. Res Chem Intermed 39:2219–2236. https://doi.org/10.1007/s11164-012-0752-1

    Article  CAS  Google Scholar 

  20. Akabli T, Toufik H, Yasri A, Bih H, Lamchouri F (2018) Combining ligand-based and structure-based drug design approaches to study the structure-activity relationships of a β carboline derivative series. Struct Chem 29:1637–1645. https://doi.org/10.1007/s11224-018-1141-12018

    Article  CAS  Google Scholar 

  21. Akabli T, Lamchouri F, Senhaji S, Toufik H (2019) Molecular docking, ADME/Tox prediction, and in vitro study of the cell growth inhibitory activity of five β-carboline alkaloids. Struct Chem. https://doi.org/10.1007/s11224-019-01308-x

    Article  Google Scholar 

  22. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008. https://doi.org/10.1093/carcin/10.6.1003

    Article  CAS  PubMed  Google Scholar 

  23. Senhaji S, Lamchouri F, Bouabid K, Assem N, El Haouari M, Bargach K, Toufik H (2020) Phenolic contents and antioxidant properties of aqueous and organic extracts of a Moroccan Ajuga iva Subsp. Pseudoiva. J Herb Spice Med Plants. https://doi.org/10.1080/10496475.2019.1709249

  24. Senhaji S, Lamchouri F, Toufik H (2020) Phytochemical content, antibacterial and antioxidant potential of endemic plant Anabasis aretioïdes Coss. & Moq. (Chenopodiaceae). Biomed Res Int. https://doi.org/10.1155/2020/6152932

  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  26. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  27. Oyaizu M (1986) Studies on products of browning reactions prepared from glucosamine. Jpn J Nutr 44:307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  28. Gaussian09 RA.: 1, Frisch MJ, trucks GW, schlegelhb, scuseria GE., robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Peterson GA and al (2009) Gaussian IncWallingford CT 121: 150–166

  29. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183. https://doi.org/10.1021/ja002455u

    Article  CAS  PubMed  Google Scholar 

  30. Pop R, Ştefănut MN, Căta A, Tănasie C, Medeleanu M (2012) Ab initio study regarding the evaluation of the antioxidant character of cyanidin, delphinidin and malvidin. Cent Eur J Chem 10:180–186. https://doi.org/10.2478/s11532-011-0128-1

    Article  CAS  Google Scholar 

  31. Anatoliotakis N, Deftereos S, Bouras G, Giannopoulos G, Tsounis D, Angelidis C, Kaoukis A, Stefanadis C (2013) Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem 13:115–138. https://doi.org/10.2174/1568026611313020004

    Article  CAS  PubMed  Google Scholar 

  32. Khan AA, Alsahli MA, Rahmani AH (2018) Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel) 6:33. https://doi.org/10.3390/medsci6020033

    Article  CAS  Google Scholar 

  33. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravi L, Kannabiran K (2016) A Handbook on protein-ligand docking tool: Autodock4. Innovare Journal of Medical Science 4:28–33

    Google Scholar 

  35. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  36. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14–22

    Article  Google Scholar 

  37. Hochestein AS (1998) Atallah, The nature of antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202:363–375. https://doi.org/10.1016/0027-5107(88)90198-4

    Article  Google Scholar 

  38. Kappus HIO, Aruoma B Halliwell (Eds.) (1991) Lipid peroxidation: mechanism and biological relevance in the book free radicals and food additives [M]. London, Taylor and Francis Ltd 59–75

  39. Aktumsek A, Zengin G, Guler GO, Cakmak YS, Duran A (2013) Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol 55:290–296. https://doi.org/10.1016/j.fct.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  40. Zhang A, Fang Y, Wang H, Li H, Zhang Z (2011) Free-radical scavenging properties and reducing power of grape cane extracts from 11 selected grape cultivars widely grown in China. Molecules 16:10104–10122. https://doi.org/10.3390/molecules161210104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Bahramian F, Bekhradnia AR (2010) Antioxidant and free radical scavenging activity of H. officinalis L. Var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak J Pharm Sci 23:29–34

    CAS  PubMed  Google Scholar 

  42. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, London, UK, pp 608–610

    Google Scholar 

  43. Moura DJ, Richter MF, Boeira JM, Pegas Henriques JA, Saffi J (2007) Antioxidant properties of beta-carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 22:293–302. https://doi.org/10.1093/mutage/gem016

  44. Song Y, Kesuma D, Wang J, Deng Y, Duan J, Wang JH, Qi RZ (2004) Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. Biochem Biophys Res Commun 317:128–132. https://doi.org/10.1016/j.bbrc.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  45. Zaker F, Oody A, Arjmand A (2007) A study on the antitumoral and differentiation effects of Peganum harmala derivatives in combination with ATRA on leukaemic cells. Arch Pharm Res 30:844–849. https://doi.org/10.1007/BF02978835

    Article  CAS  PubMed  Google Scholar 

  46. Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H (2010) beta-Carboline alkaloids in Peganum harmala and inhibition of human [MAO]. Food Chem Toxicol 48:839–845. https://doi.org/10.1016/j.fct.2009.12.019

    Article  CAS  PubMed  Google Scholar 

  47. Hamsa TP, Kuttan G (2010) Harmine inhibits tumour specific neovessel formation by regulating VEGF, MMP, TIMP and proinflammatory mediators both in vivo and in vitro. Eur J Pharmacol 649:64–73. https://doi.org/10.1016/j.ejphar.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  48. Ma Y, Wink M (2010) The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res 24:146–149. https://doi.org/10.1002/ptr.2860

    Article  CAS  PubMed  Google Scholar 

  49. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50. https://doi.org/10.1146/annurev.nu.16.070196.000341

    Article  CAS  PubMed  Google Scholar 

  50. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  51. Chatterjee M, Saluja R, Kanneganti S, Chinta S, Dikshit M (2007) Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cell Mol Biol 53:84–93

    CAS  PubMed  Google Scholar 

  52. Ao C, Deba F, Tako M, Tawata S (2009) Biological activity and composition of extract from aerial root of Ficus microcarpa L. fil. Int J Food Sci Technol 44:349–358

    Article  CAS  Google Scholar 

  53. Rajurkar NS, Hande SM (2011) Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J Pharm Sci 73:146–151. https://doi.org/10.4103/0250-474x.91574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duh PD (1998) Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free-radical and active oxygen. J Am Oil Chem Soc 75:455–461. https://doi.org/10.1007/s11746-998-0248-8

    Article  CAS  Google Scholar 

  55. Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature 346:274–276. https://doi.org/10.1038/346274a0

    Article  CAS  PubMed  Google Scholar 

  56. Phatak RS, Hendre AS (2014) Total antioxidant capacity (TAC) of fresh leaves of Kalanchoe pinnata. J Pharmacogn Phytochem 2:32–35

    Google Scholar 

  57. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290‐4302. https://doi.org/10.1021/jf0502698

  58. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Sidi Mohamed Ben Abdellah University (USMBA) of Fez, Morocco.

Funding

This study was supported by the Sidi Mohamed Ben Abdellah University (USMBA) of Fez, Morocco.

Author information

Authors and Affiliations

Authors

Contributions

SS performed experimental studies, statistical analysis, and manuscript preparation. FL designed the experiments and consistent guidance; analyzed the data, manuscript preparation, and review; edited the final version; and submitted it for publication. TA in silico studies and manuscript preparation. HT designed the experiments and provided consistent guidance and manuscript preparation and review.

Corresponding author

Correspondence to Fatima Lamchouri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senhaji, S., Lamchouri, F., Akabli, T. et al. In vitro antioxidant activities of five β-carboline alkaloids, molecular docking, and dynamic simulations. Struct Chem 33, 883–895 (2022). https://doi.org/10.1007/s11224-022-01886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01886-3

Keywords

Navigation