Skip to main content

Advertisement

Log in

Structures and energetics of darunavir and active site amino acids of native and mutant HIV1 protease: a computational study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical calculations have been performed at the M06–2X/6–31G(d,p) level of theory to investigate the strength and nature of interactions between the active site amino acids at positions 25 and 30 with darunavir (DRV) inhibitor of two native (D25 and D30 in 4LL3, 1T3R) and five mutant (N25 in 3BVB, 3SO9; N30 in 2F80, 3LZV, 3UCB) HIV–1 proteases. Molecular orbitals HOMO and LUMO noted down upon the M06–2X/6–31G(d,p) level optimized amino acid–DRV geometries helped us explain which region of the inhibitor has the ability to interact with the amino acid more effectively. This analysis of the molecular orbitals allowed us to explore the nature of the interactions present between active site amino acids and the DRV in native and mutated proteins. The electrostatic potential surface maps generated for the amino acid–DRV complexes investigated the extent of interactions within the active site of the protein. Natural bond order analysis performed on the optimized geometries suggested that the extent of charge transfer helps in determining the stability of the complexes, which is very important for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data is included in the manuscript and provided as Supplementary information.

References

  1. Alexander W, Jiri V (1998) Inhibitors of HIV–1 Protease: A major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284

    Article  Google Scholar 

  2. Brik A, Wong C-H (2003) HIV–1 Protease: Mechanism and Drug Discovery. Org Biomol Chem 1:5–14

    Article  CAS  PubMed  Google Scholar 

  3. Loeb DD, Swanstrom R, Everitt L, Manchester M, Stamper SE, Hutchison CA III (1989) Complete mutagenesis of the HIV–1 protease. Nature 340:397–400

    Article  CAS  PubMed  Google Scholar 

  4. Oroszlan S, Luftig RB (1990) Retroviral proteinases. Curr Top Microbiol Immunol 157:153–185

    CAS  PubMed  Google Scholar 

  5. Partin K, Zybarth G, Ehrlich L, Decrombrugghe M, Wimmer E, Carter C (1991) Deletion of sequences upstream of the proteinase improves the proteolytic processing of Human Immunodeficiency Virus Type 1. Proc Natl Acad Sci USA 88:4776–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang M, Orenstein JM, Martin MA, Freed EO (1995) p6Gag is required for particle production from full length Human Immunodeficiency Virus Type 1 molecular clones expressing protease. J Virol 69:6810–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang L, Chen C (2013) Understanding HIV–1 protease autoprocessing for novel therapeutic development. Future Med Chem 5:1–23

    Article  Google Scholar 

  8. Silva AM, Cachau RE, Sham HL, Erickson JW (1996) Inhibition and catalytic mechanism of HIV-1 aspartic protease. J Mol Biol 255:321–346

    Article  CAS  PubMed  Google Scholar 

  9. Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Bax A, Stahl SJ, Kaufman JD, Wingfield PT, Lam PYS, Jadhav PK, Hodge CN, Domaille PJ, Chang C-H (1995) Flexibility and function in HIV–1 protease. Nat Struct Biol 2:274–280

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh AK, Osswald HL, Prato G (2016) Recent progress in the development of HIV–1 protease inhibitors for the treatment of HIV/AIDS. J Med Chem 59:5172–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghosh AK, Anderson DD, Mitsuya H (2010) The FDA approved HIV–1 protease inhibitors for treatment of HIV/AIDS. In Burger’s Medicinal Chemistry and Drug Discovery, 7th Ed. Abraham DJ, Rotella DP, Eds. John Wiley & Sons: Hoboken, NJ, 7:1–74

  12. Koh Y, Nakata H, Maeda K, Ogata H, Bilcer G, Devasamudram T, Kincaid JF, Boross P, Wang YF, Tie Y, Volarath P, Gaddis L, Harrison RW, Weber IT, Ghosh AK, Mitsuya H (2003) Novel bis–tetrahydrofuranylurethane containing nonpeptidic protease inhibitor (PI) UIC–94017 (TMC114) with potent activity against multi–PI–resistant human immunodeficiency virus in vitro. Antimicrob Agents Chemother 47:3123–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Meyer S, Azijn H, Surleraux D, Jochmans D, Tahri A, Pauwels R, Wigerinck P, de Béthune MP (2005) TMC114, A novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor–resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother 49:2314–2321

    Article  PubMed  PubMed Central  Google Scholar 

  14. Surleraux DL, Tahri A, Verschueren WG, Pille GM, de Kock HA, Jonckers TH, Peeters A, de Meyer S, Azijn H, Pauwels R, de Bethune M-P, King NM, Prabu-Jeyabalan M, Schiffer CA, Wigerinck PBTP (2005) Discovery and selection of TMC114, a next generation HIV–1 protease inhibitor. J Med Chem 48:1813–1822

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh AK, Dawson ZL, Mitsuya H (2007) Darunavir, a conceptually new HIV–1 protease inhibitor for the treatment of drugresistant HIV. Bioorg Med Chem 15:7576–7580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghosh AK, Anderson DD, Weber IT, Mitsuya H (2012) Enhancing protein backbone binding–A fruitful concept for combating drug-resistant HIV. Angew Chem Int Ed 51:1778–1802

    Article  CAS  Google Scholar 

  17. Deeks ED (2014) Darunavir: A review of its use in the management of HIV–1 infection. Drugs 74:99–125

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh AK, Sridhar PR, Leshchenko S, Hussain AK, Li J, Kovalevsky AY, Walters DE, Wedekind JE, Grum–Tokars V, Das D, Koh Y, Maeda K, Gatanaga H, Weber IT, Mitsuya H (2006) Structure–based design of novel HIV–1 protease inhibitors to combat drug resistance. J Med Chem 49:5252–5261

  19. Kovalevsky AY, Louis JM, Aniana A, Ghosh AK, Weber IT (2008) Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV–2 protease. J Mol Biol 384:178–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghosh AK, Chapsal BD, Mitsuaya H (2010) Aspartic acid proteases as therapeutic targets. Ghosh AK, editor. Wiley–VCH Weinheim 45:205

  21. Tie Y, Boross P, Wang Y-F, Gaddis L, Hussain AK, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Weber IT (2004) High resolution crystal structures of HIV–1 protease with a potent non-peptide inhibitor (UIC–94017) active against multi-drug-resistant clinical strains. J Mol Biol 338:341–352

    Article  CAS  PubMed  Google Scholar 

  22. King NM, Prabu-Jeyabalan M, Nalivaika EA, Wigerinck P, de Béthune MP, Schiffer CA (2004) Structural and thermodynamic basis for the binding of TMC–114, a next–generation human immunodeficiency virus type 1 protease inhibitor. J Virol 78:12012–12021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kovalevsky AY, Tie Y, Liu F, Boross PI, Wang Y-F, Leshchenko S, Ghosh AK, Harrison RW, Weber IT (2006a) Susceptibility of potent antiviral inhibitor to highly drug resistant mutations D30N, I50V and L90M of HIV–1 protease. J Med Chem 49:1379–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kovalevsky AY, Liu F, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Weber IT (2006b) Ultra-high resolution crystal structure of HIV–1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol 363:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodriguez EJ, Angeles TS, Meek TD (1993) Use of Nitrogen–15 kinetic isotope effects to elucidate details of the chemical mechanism of human immunodeficiency virus 1 protease. Biochemistry 32:12380–12385

    Article  CAS  PubMed  Google Scholar 

  26. Wlodawer A, Miller M, Jaskólski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SBH (1989) Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV–1 protease. Science 245:616–621

    Article  CAS  PubMed  Google Scholar 

  27. Kožíšek M, Lepšík M, Šašková KG, Brynda J, Konvalinka J, Řezáčová P (2014) Thermodynamic and structural analysis of HIV protease resistance to Darunavir – analysis of heavily mutated patient–derived HIV–1 proteases. FEBS J 281:1834–1847

    Article  PubMed  Google Scholar 

  28. Brown K, Stewart L, Whitcomb JM, Yang D, Nettles RE, Lathouwers E (2018) Prevalence of darunavir resistance in the United States from 2010 to 2017. AIDS Res and Human Retrovir 34:1036–1043

    Article  CAS  Google Scholar 

  29. Rhee S-Y, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW (2003) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 31:298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. King NM, Prabu-Jeyabalan M, Bandaranayake RM, Nalam MNL, Nalivaika EA, Özen A, Haliloglu T, Yilmaz NK, Schiffer CA (2012) Extreme entropy–enthalpy compensation in a drug resistant variant of HIV–1 protease. ACS Chem Biol 7:1536–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sayer JM, Liu F, Ishima R, Weber IT, Louis JM (2008) Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV–1 protease. J Biol Chem 283:13459–13470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Liu Z, Brunzelle JS, Kovari IA, Dewdney TG, Reiter SJ, Kovari LC (2011) The higher barrier of darunavir and tipranavir resistance for HIV–1 protease. Biochem Biophys Res Commun 412:737–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Chang Y-CE, Louis JM, Wang Y-F, Harrison RW, Weber IT (2014) Structures of darunavir–resistant HIV–1 protease mutant reveal atypical binding of darunavir to wide open flaps. ACS Chem Biol 9:1351–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Agniswamy J, Shen C-H, Aniana A, Sayer JM, Louis JM, Weber IT (2012) HIV–1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements. Biochem 51:2819–2828

    Article  CAS  Google Scholar 

  35. Bandaranayake RM, Kolli M, King NM, Nalivaika EA, Heroux A, Junko K, Wataru S, Schiffer CA (2010) The effect of clade-specific sequence polymorphisms on HIV–1 protease activity and inhibitor resistance pathways. J Virol 84:9995–10003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2006a) Density functional for spectroscopy: No long–range self–interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y, Truhlar DG (2006b) A new local density functional for main–group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

  39. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris JA (1988) Complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first–row atoms. J Chem Phys 89:2193–2198

    Article  CAS  Google Scholar 

  40. Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open–shell systems and the total energies of the first–row atoms. J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  41. Fukuli K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Phys Chem 20:4

  42. Vetrivel R, Deka RC, Chatterjee A, Kubo M, Broclawik E, Miyamoto A (1996) Studies on the molecular electrostatic potential inside the microporous material and its relevance to their catalytic activity. Theor Comput Chem 3:509–541

    Article  CAS  Google Scholar 

  43. Foster J, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  44. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donoracceptor, viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  45. Weinhold F, Landis CR (2005) Valency and bonding: A natural bond orbital donor–acceptor perspective: Cambridge University Press

  46. Weinhold F (2012) Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives. J Comput Chem 33:2363–2379

    Article  CAS  PubMed  Google Scholar 

  47. Majerz I (2012) Directionality of inter–and intramolecular OHO hydrogen bonds: DFT study followed by AIM and NBO analysis. J Phys Chem A 116:7992–8000

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford, CT

  49. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: A computer–based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  50. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539(1–6)

  51. Ahsan M, Pindi C, Senapati S (2020) Electrostatics plays a crucial role in HIV–1 protease substrate binding, drugs fail to take advantage. Biochem 59:3316–3331

    Article  CAS  Google Scholar 

  52. Scrocco E, Tomasi J (1978) Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. Adv Quant Chem 11:115–193

    Article  CAS  Google Scholar 

  53. Luque FJ, López JM, Orozco M (2000) Perspective on Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Acc 103:343–345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CMSD, University of Hyderabad, for computational facilities. Y. Indra Neela thanks UGC-Dr. D.S. Kothari Post-doctoral Fellowship for financial assistance and support.

Funding

Y. Indra Neela received Dr. D.S. Kothari Post-doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Lalitha Guruprasad conceived the idea, Y. Indra Neela conducted the work, Y. Indra Neela and Lalitha Guruprasad wrote the manuscript.

Corresponding authors

Correspondence to Y. Indra Neela or Lalitha Guruprasad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supporting information

Geometries (bond distance in Å) of amino acid (D25, N25, D30 and N30)–DRV (Darunavir) complexes of the native (1T3R, 4LL3) and mutant (2F80, 3LZV, 3UCB, 3BVB and 3SO9), Homo (H)–Lumo (L) regions of amino acid (D25, D30, N25 and N30)–DRV (Darunavir) complexes of the native (4LL3) and mutant (2F80, 3LZV, 3UCB, 3BVB and 3SO9) and Electrostatic potential (ESP) maps of amino acid (D25, D30, N25 and N30)–DRV (Darunavir) complexes of the native (4LL3) and mutant (3LZV, 3UCB and 3SO9) HIV–1 proteases calculated at M06–2X/6–31G(d,p) level of theory, schematic representation of hydrogen bond interaction (green line) of active site amino acids (ASP25, ASP30) of HIV–1 protease with darunavir (017202 = DRV) inhibitor as seen in PDB Id:4LL3 and HOMO (H), LUMO (L) and energy gap (H–L) in eV calculated at M06–2X/6–31G(d,p) level of theory are provided.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neela, Y.I., Guruprasad, L. Structures and energetics of darunavir and active site amino acids of native and mutant HIV1 protease: a computational study. Struct Chem 33, 395–407 (2022). https://doi.org/10.1007/s11224-021-01852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01852-5

Keywords

Navigation