Skip to main content
Log in

Computational investigation of 4,5-diphenyl-1H-pyrrole-3-carboxylic acid derivatives as B-cell lymphoma-extra large (Bcl-xL) inhibitors by using 3D-QSAR, molecular docking, and molecular dynamics simulations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

B-cell lymphoma-extra large (Bcl-xL) can inhibit apoptosis via heterodimerization with pro-apoptotic Bcl-2 family proteins, and is over-expressed in many different types of human tumors and has been regarded as a novel cancer therapeutic strategy. Due to the fact that current Bcl-xl inhibitors lack sustained effectiveness and the occurrence of some unpredictable side effects, the development of new inhibitors is necessary. In this study, computational study was applied to a series of Bcl-xL inhibitors to reveal the relationship between structure and activities through applying molecular docking, three-dimensional qualitative structure-activity relationship (3D-QSAR), and molecular dynamic (MD) simulations. A molecular docking study was performed to explore possible modes of action between inhibitors and Bcl-xL protein. Subsequently, 3D-QSAR models were generated with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). For the best CoMFA model, the Q2 and R2 values were computed as 0.927 and 0.999, while those were computed as 0.943 and 0.998 for the best CoMSIA model. Twenty new Bcl-xL inhibitors were designed, and all their predictive activities were improved than molecules in the dataset based on the contour maps. In addition, MD simulations were conducted to evaluate the stability of the complexes conformed by two inhibitors and Bcl-xL, and the results were consistent with those of the molecular docking and 3D-QSAR studies. Finally, binding free energy was computed through molecular mechanics performed by surface area approach (MM-GBSA), and the result congruent with the activities which indicated van der Waals as well as lipophilic energy contributing the most during the molecular with Bcl-xL protein binding. In brief, our research provided valuable information for further development of Bcl-xL inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Bcl-xL:

B-cell lymphoma-extra large

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity indices analysis

LOO:

Leave-one-out

MD:

Molecular dynamics

MM-GBSA:

Molecular Mechanics Generalized Born Surface Area

ONC:

The optimum number of component

PDB:

Protein data bank

PH:

Pleckstrin nomology

PLS:

Partial Least Squares

PTEN:

Phosphatase and tensin homolog

Q2 :

Cross-validated coefficient

R2 :

The correlation coefficient

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

SASA:

Solvent accessible surface area

SEE:

The standard error of estimate

SPC:

Simple point charge

XED:

Extended election distribution

3D-QSAR:

Three-dimensional quantitative structure-activity relationships

References

  1. Park H-A, Broman K, Jonas EA (2021) Oxidative stress battles neuronal Bcl-xL in a fight to the death. Neural Regen Res 16:12–15

    Article  PubMed  Google Scholar 

  2. Xu XY, Iwasa H, Hossain S, Sarkar A, Maruyama J, Arimoto-Matsuzaki K, Hata Y (2017) BCL-XL binds and antagonizes RASSF6 tumor suppressor to suppress p53 expression. Genes Cells 22:993–1003

    Article  CAS  PubMed  Google Scholar 

  3. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Jong Y, Monderer D, Brandinelli E, Monchanin M, van den Akker BE, van Oosterwijk JG, Blay JY, Dutour A, Bovee J (2018) Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis 7:9

    Article  Google Scholar 

  5. Wight JC, Chong G, Grigg AP, Hawkes EA (2018) Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood Rev 32:400–415

    Article  CAS  PubMed  Google Scholar 

  6. Vardaki I, Sanchez C, Fonseca P, Olsson M, Chioureas D, Rassidakis G, Ullen A, Zhivotovsky B, Bjorkholm M, Panaretakis T (2016) Caspase-3-dependent cleavage of Bcl-xL in the stroma exosomes is required for their uptake by hematological malignant cells. Blood 128:2655–2665

    Article  CAS  PubMed  Google Scholar 

  7. Kamath PR, Sunil D, Ajees AA, Pai KSR, Biswas S (2016) N '-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene) benzohydra zide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur J Med Chem 120:134–147

    Article  CAS  PubMed  Google Scholar 

  8. Setoguchi K, Cui L, Hachisuka N, Obchoei S, Shinkai K, Hyodo F, Kato K, Wada F, Yamamoto T, Harada-Shiba M, Obika S, Nakano K (2017) Antisense oligonucleotides targeting Y-box binding protein-1 inhibit tumor angiogenesis by downregulating Bcl-xL-VEGFR2/-tie axes. Mol Ther Nucleic Acids 9:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Doherty GA, Judd AS, Tao Z-F, Hansen TM, Frey RR, Song X, Bruncko M, Kunzer AR, Wang X, Wendt MD, Flygare JA, Catron ND, Judge RA, Park CH, Shekhar S, Phillips DC, Nimmer P, Smith ML, Tahir SK, Xiao Y, Xue J, Zhang H, Le PN, Mitten MJ, Boghaert ER, Gao W, Kovar P, Choo EF, Diaz D, Fairbrother WJ, Elmore SW, Sampath D, Leverson JD, Souers AJ (2020) Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-XL inhibitor. ACS Med Chem Lett 11:1829-1836

  10. Gloaguen C, Voisin-Chiret AS, Santos J S-d O, Fogha J, Gautier F, De Giorgi M, Burzicki G, Perato S, Pétigny-Lechartier C, Jeune KS-L, Brotin E, Goux D, N’Diaye M, Lambert B, Louis M-H, Ligat L, Lopez F, Juin P, Bureau R, Rault S, Poulain L (2015) First evidence that oligopyridines, α-helix foldamers, inhibit Mcl-1 and sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. J Med Chem 58:1644–1668

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Song T, Feng Y, Guo Z, Fan Y, Xu W, Liu L, Wang A, Zhang Z (2016) Bcl-2/MDM2 dual inhibitors based on universal pyramid-like α-helical mimetics. J Med Chem 59:3152–3162

    Article  CAS  PubMed  Google Scholar 

  12. Kamath PR, Sunil D, Ajees AA, Pai KS, Biswas S (2016) N'-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene) benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur J Med Chem 120:134–147

    Article  CAS  PubMed  Google Scholar 

  13. Chung C -w, Dai H, Fernandez E, Tinworth CP, Churcher I, Cryan J, Denyer J, Harling JD, Konopacka A, Queisser MA, Tame CJ, Watt G, Jiang F, Qian D, Benowitz AB (2020) Structural insights into PROTAC-mediated degradation of Bcl-xL. ACS Chem Biol 15:2316-2323

  14. Henz K, Al-Zebeeby A, Basoglu M, Fulda S, Cohen GM, Varadarajan S, Vogler M (2019) Selective BH3-mimetics targeting BCL-2, BCL-XL or MCL-1 induce severe mitochondrial perturbations. Biol Chem 400:181–185

    Article  CAS  PubMed  Google Scholar 

  15. Huang K, O’Neill KL, Li J, Zhou W, Han N, Pang X, Wu W, Struble L, Borgstahl G, Liu Z, Zhang L, Luo X (2019) BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res 29:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saleh T, Carpenter VJ, Tyutyunyk-Massey L, Murray G, Leverson JD, Souers AJ, Alotaibi MR, Faber AC, Reed J, Harada H, Gewirtz DA (2020) Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-XL–BAX interaction. Mol Oncol 14:2504-2519

  17. Montoya JJ, Turnidge MA, Wai DH, Patel AR, Lee DW, Gokhale V, Hurley LH, Arceci RJ, Wetmore C, Azorsa DO (2019) In vitro activity of a G-quadruplex-stabilizing small molecule that synergizes with Navitoclax to induce cytotoxicity in acute myeloid leukemia cells. BMC Cancer 19:1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seymour JF, Davids MS, Pagel JM, Kahl BS, Wierda WG, Puvvada S, Gerecitano JF, Kipps TJ, Anderson MA, Huang DCS (2014) ABT-199 (GDC-0199) in relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL): high complete- response rate and durable disease control. Asco Meeting Abstracts 32

  19. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16:273–284

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Zhou H, Aguilar A, Liu L, Bai L, McEachern D, Yang C-Y, Meagher JL, Stuckey JA, Wang S (2012) Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. J Med Chem 55:8502–8514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou H, Aguilar A, Chen J, Bai L, Liu L, Meagher JL, Yang C-Y, McEachern D, Cong X, Stuckey JA, Wang S (2012) Structure-based design of potent Bcl-2/Bcl-xL inhibitors with strong in vivo antitumor activity. J Med Chem 55(13):6149–6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aguilar A, Zhou H, Chen J, Liu L, Bai L, McEachern D, Yang C-Y, Meagher J, Stuckey J, Wang S (2013) A potent and highly efficacious Bcl-2/Bcl-xL inhibitor. J Med Chem 56:3048–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Purohit D, Saini V, Kumar S, Kumar A, Narasimhan B (2020) Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking study of 2-((pyridin-3-yloxy)methyl) piperazines as alpha 7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders. Mini-Rev Med Chem 20:1031–1041

    Article  CAS  PubMed  Google Scholar 

  24. Ding L, Wang ZZ, Sun XD, Yang J, Ma CY, Li W, Liu HM (2017) 3D-QSAR (CoMFA, CoMSIA), molecular docking and molecular dynamics simulations study of 6-aryl-5-cyano-pyrimidine derivatives to explore the structure requirements of LSD1 inhibitors. Bioorg Med Chem Lett 27:3521-3528

  25. Wang T, Yuan XS, Wu MB, Lin JP, Yang LR (2017) The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin Drug Discovery 12:769–784

    CAS  Google Scholar 

  26. Chohan TA, Chen JJ, Qian HY, Pan YL, Chen JZ (2016) Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. Mol BioSyst 12:1250–1268

    Article  CAS  PubMed  Google Scholar 

  27. Cheng P, Li JJ, Wang J, Zhang XY, Zhai HL (2018) Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies. J Biomol Struct Dyn 36:1529–1549

  28. Gu X, Wang Y, Wang M, Wang J, Li N (2019) Computational investigation of imidazopyridine analogs as protein kinase B (Akt1) allosteric inhibitors by using 3D-QSAR, molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 26:1–16

    CAS  Google Scholar 

  29. Wang Y, Feng S, Gao H, Wang J (2020) Computational investigations of gram-negative bacteria phosphopantetheine adenylyltransferase inhibitors using 3D-QSAR, molecular docking and molecular dynamic simulations. J Biomol Struct Dyn 38:1435–1447

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Wang Y, Kong D, Jiang H, Wang J, Cheng M (2018) In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Comput Biol Chem 77:214–225

    Article  CAS  PubMed  Google Scholar 

  31. Gajjar KA, Gajjar AK (2020) CoMFA, CoMSIA and HQSAR analysis of 3-aryl-3-ethoxypropanoic acid derivatives as GPR40 modulators. Current drug discovery technologies 17:100–118

    Article  CAS  PubMed  Google Scholar 

  32. Abdizadeh R, Hadizadeh F, Abdizadeh T (2019) Molecular modeling studies of anti-Alzheimer agents by QSAR, molecular docking and molecular dynamic simulations. Techniques, Medinical Chemistry

    Book  Google Scholar 

  33. Jujjavarapu SE, Dhagat S (2018) In silico discovery of novel ligands for antimicrobial lipopeptides for computer-aided drug design. Probiotics Antimicrob Proteins 10:129–141

    Article  CAS  PubMed  Google Scholar 

  34. Seth A, Ojha PK, Roy K (2020) QSAR modeling with ETA indices for cytotoxicity and enzymatic activity of diverse chemicals. J Hazard Mater 394:122498

    Article  CAS  PubMed  Google Scholar 

  35. Abbasi M, Sadeghi-Aliabadi H, Amanlou M (2018) 3D-QSAR, molecular docking, and molecular dynamic simulations for prediction of new Hsp90 inhibitors based on isoxazole scaffold. J Biomol Struct Dyn 36:1463–1478

    Article  CAS  PubMed  Google Scholar 

  36. Ul-Haq Z, Ashraf S, Bkhaitan MM (2019) Molecular dynamics simulations reveal structural insights into inhibitor binding modes and mechanism of casein kinase II inhibitors. J Biomol Struct Dyn 37:1120–1135

    Article  CAS  PubMed  Google Scholar 

  37. Shah BM, Modi P, Trivedi P (2020) Pharmacophore- based virtual screening, 3D- QSAR, molecular docking approach for identification of potential dipeptidyl peptidase IV inhibitors. J Biomol Struct Dyn 7:1–23

    Article  Google Scholar 

  38. Li M, Wei D, Zhao H, Du Y (2014) Genotoxicity of quinolones: substituents contribution and transformation products QSAR evaluation using 2D and 3D models. Chemosphere 95:220–226

    Article  PubMed  Google Scholar 

  39. Dare JK, Silva DR, Ramalho TC, Freitas MP Conformational fingerprints in the modelling performance of MIA-QSAR: a case for SARS-CoV protease inhibitors. Molecular Simulation:7

  40. Rajagopal K, Varakumar P, Aparna B, Byran G, Jupudi S (2020) Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies. J Biomol Struct Dyn 12:1–12

    Article  Google Scholar 

  41. Mehta CC, Patel A, Bhatt HG (2020) New molecular insights into dual inhibitors of tankyrase as Wnt signaling antagonists: 3D-QSAR studies on 4H-1,2,4-triazole derivatives for the design of novel anticancer agents. Structural Chemistry:19

  42. Zhang J, Liu X, Wang SQ, Liu GY, Xu WR, Cheng XC, Wang RL (2017) Identification of dual ligands targeting angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ by core hopping of telmisartan. J Biomol Struct Dyn 35:2665–2680

    Article  CAS  PubMed  Google Scholar 

  43. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  Google Scholar 

  44. Shekhar MS, Venkatachalam T, Sharma CS, Pratap Singh H, Kalra S, Kumar N (2019) Computational investigation of binding mechanism of substituted pyrazinones targeting corticotropin releasing factor-1 receptor deliberated for anti-depressant drug design. J Biomol Struct Dyn 37:3226–3244

    Article  CAS  PubMed  Google Scholar 

  45. Balasubramanian PK, Balupuri A, Bhujbal SP, Cho SJ (2019) 3D-QSAR-aided design of potent c-met inhibitors using molecular dynamics simulation and binding free energy calculation. J Biomol Struct Dyn 37:2165–2178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by LiaoNing Revitalization Talents Program (XLYC1807118), Shenyang Young Scientific and Technological Innovators Programme (RC200408), and Liaoning BaiQianWan Talents Program (2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu or Ning Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Gu, X., Meng, C. et al. Computational investigation of 4,5-diphenyl-1H-pyrrole-3-carboxylic acid derivatives as B-cell lymphoma-extra large (Bcl-xL) inhibitors by using 3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 32, 1005–1018 (2021). https://doi.org/10.1007/s11224-020-01631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01631-8

Keywords

Navigation