Skip to main content
Log in

Novel architectures of boron

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The review presents results of the recent studies of non-typical forms of boron derivatives, including flat hexagonal boron, boron fullerenes, supertetrahedral boron, and superoctahedral boron. The approaches to the design of these systems based on combination of stable structural units, as well as methods aimed at compensating the electronic deficit of non-standard boron structures are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baumgartner T, Jäkle F (eds) (2018) Main group strategies towards functional hybrid materials. Wiley, New York

    Google Scholar 

  2. Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB (2011) Ultralight metallic microlattices. Science 334:962–965

    CAS  PubMed  Google Scholar 

  3. Verdooren A, Chan HM, Grenestedt JL, Harmer MP, Caram HS (2006) Fabrication of low-density ferrous metallic foams by reduction of chemically bonded ceramic foams. J Am Ceram Soc 89:3101–3106

    CAS  Google Scholar 

  4. Jian T, Chen X, Li S-D, Boldyrev AI, Li J, Wang L-S (2019) Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem Soc Rev 48:3550–3591

  5. Zhang Z, Penev ES, Yakobson BI (2017) Two-dimensional boron: structures, properties and applications. Chem Soc Rev 46:6746–6763

    CAS  PubMed  Google Scholar 

  6. Kondo T (2017) Recent progress in boron nanomaterials. Sci Technol Adv Mater 18:780–804

    PubMed  PubMed Central  Google Scholar 

  7. Hosmane NS (ed) (2011) Boron science: new technologies and applications. CRC Press, Boca Raton

    Google Scholar 

  8. Saxena S (ed) (2016) Handbook of boron nanostructures. CRC Press, Boca Raton

    Google Scholar 

  9. Perkins GL (ed) (2011) Boron: compounds, production and application. Nova Science Publishers, New York

    Google Scholar 

  10. Zubarev DY, Boldyrev AI (2007) Comprehensive analysis of chemical bonding in boron clusters. J Comput Chem 28:251–268

    CAS  PubMed  Google Scholar 

  11. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) Allboron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866

    CAS  Google Scholar 

  12. Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358

    CAS  PubMed  Google Scholar 

  13. Decker BF, Kasper JS (1959) The crystal structure of a simple rhombohedral form boron. Acta Crystallogr 12:503–506

    CAS  Google Scholar 

  14. Hughes RE, Kennard CHL, Sullenger DB, Weakliem HA, Sands DE, Hoard JL (1963) The structure of β-rhombohedral boron. J Am Chem Soc 85:361–362

    Google Scholar 

  15. Hoard JL, Hughes RE, Sands DE (1958) The structure of tetragonal boron. J Am Chem Soc 80:4507–4515

    CAS  Google Scholar 

  16. Boustani I (1997) Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n=2-14). Phys Rev B Condens Matter Mater Phys 55:16426–16438

    CAS  Google Scholar 

  17. Zhai HJ, Kiran B, Li J, Wang LS (2003) Hydrocarbon analogues of boron clusters planarity, aromaticity and antiaromaticity. Nat Mater 2:827–833

    CAS  PubMed  Google Scholar 

  18. Kiran B, Bulusu S, Zhai HJ, Yoo S, Zeng XC, Wang LS (2005) Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. P Natl Acad Sci USA 102:961–964

    CAS  Google Scholar 

  19. Mukhopadhyay S, He H, Pandey R, Yap YK, Boustani I (2009) Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D double-rings. J Phys Conf Ser 176:012028

    Google Scholar 

  20. Pham HT, Duong LV, Tam NM, Pham-Ho MP, Nguyen M (2014) The boron conundrum: bonding in the bowl B30 and B36, fullerene B40 and triple ring B42 clusters. Chem Phys Lett 608:295–302

    CAS  Google Scholar 

  21. Wang L, Zhao J, Li F, Chen Z (2010) Boron fullerenes with 32-56 atoms: irregular cage configurations and electronic properties. Chem Phys Lett 501:16–19

    CAS  Google Scholar 

  22. Li F, Jin P, Jiang DE, Wang L, Zhang SB, Zhao J, Chen Z (2012) B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functional. J Chem Phys 136:074302

    PubMed  Google Scholar 

  23. Olson JK, Boldyrev AI (2012) Electronic transmutation: boron acquiring an extra electron becomes ‘carbon’. Chem Phys Lett 523:83–86

    CAS  Google Scholar 

  24. Zhang X, Lundell KA, Olson JK, Bowen KH, Boldyrev AI (2018) Electronic transmutation (ET): chemically turning one element into another. Chem Eu J 24:9200–9210

    CAS  Google Scholar 

  25. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  PubMed  Google Scholar 

  26. Aufray B, Kara A, Vizzini SB, Oughaddou H, LéAndri C, Ealet B, Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102

    Google Scholar 

  27. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini SB, Ealet BN, Aufray B (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109

    Google Scholar 

  28. Lau KC, Pandey R (2007) Stability and electronic properties of atomistically-engineered 2D boron sheets. J Phys Chem C 111:2906–2912

    CAS  Google Scholar 

  29. Lau KC, Pandey R (2008) Thermodynamic stability of novel boron sheet configurations. J Phys Chem B 112:10217–10220

    CAS  PubMed  Google Scholar 

  30. Boustani I (1997) New quasi-planar surfaces of bare boron. Surf Sci 370:355–363

    CAS  Google Scholar 

  31. Boustani I (1997) New convex and spherical structures of bare boron clusters. J Solid State Chem 133:182–189

    CAS  Google Scholar 

  32. Boustani I, Quandt A (1997) Nanotubules of bare boron clusters: ab initio and density functional study. Europhys Lett 39:527–532

    CAS  Google Scholar 

  33. Quandt A, Boustani I (2005) Boron nanotubes. Chem Phys Chem 6:2001–2008

    CAS  PubMed  Google Scholar 

  34. Boustani I, Quandt A, Hernández E, Rubio A (1999) New boron based nanostructured materials. J Chem Phys 110:3176–3185

    CAS  Google Scholar 

  35. Gindulytė A, Lipscomb WN, Massa L (1998) Proposed boron nanotubes. Inorg Chem 37:6544–6545

    PubMed  Google Scholar 

  36. Kunstmann J, Quandt A (2006) Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties. Phys Rev B 74:035413

    Google Scholar 

  37. Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI (2002) Electronic structure and chemical bonding of B5- and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys 117:7917–7924

    CAS  Google Scholar 

  38. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed 42:6004–6008

    CAS  Google Scholar 

  39. Szwacki GN, Sadrzadeh A, Yakobson BI (2007) B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 98:116804

    Google Scholar 

  40. Tang H, Ismail-Beigi S (2007) Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 99:115501

    PubMed  Google Scholar 

  41. Özdoğan C, Mukhopadhyay S, Hayami W, Güvenç ZB, Pandey R, Boustani I (2010) The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J Phys Chem C 114:4362–4375

    Google Scholar 

  42. Miller J (2007) New sheet structures may be the basis for boron nanotubes. Phys Today 60:20–21

    Google Scholar 

  43. Yang X, Ding Y, Ni J (2008) Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B Condens Matter Mater Phys 77:041402

    Google Scholar 

  44. Zope RR, Baruah T (2011) Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet. Chem Phys Lett 501:193–196

    CAS  Google Scholar 

  45. Wu X, Dai J, Zhao Y, Zhuo Z, Yang J, Zeng XC (2012) Two-dimensional boron monolayer sheets. ACS Nano 6:7443–7453

    CAS  PubMed  Google Scholar 

  46. Yu X, Li L, Xu XW, Tang CC (2012) Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J Phys Chem C 116:20075–20079

    CAS  Google Scholar 

  47. Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI (2012) Polymorphism of two-dimensional boron. Nano Lett 12:2441–2445

    CAS  PubMed  Google Scholar 

  48. Lu H, Mu Y, Bai H, Chen Q, Li SD (2013) Binary nature of monolayer boron sheets from ab initio global searches. J Chem Phys 138:024701

    PubMed  Google Scholar 

  49. Galeev TR, Chen Q, Guo JC, Bai H, Miao CQ, Lu HG, Sergeeva AP, Li SD, Boldyrev AI (2011) Deciphering the mystery of hexagon holes in an all-boron graphene α-sheet. Phys Chem Chem Phys 13:11575–11578

    CAS  PubMed  Google Scholar 

  50. Zhou XF, Dong X, Oganov AR, Zhu Q, Tian Y, Wang HT (2014) Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys Rev Lett 112:085502

    Google Scholar 

  51. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113

    PubMed  Google Scholar 

  52. Alexandrova AN, Birch KA, Boldyrev AI (2003) Flattening the B6H62- octahedron. Ab initio prediction of a new family of planar all-boron aromatic molecules. J Am Chem Soc 125:10786–10787

    CAS  PubMed  Google Scholar 

  53. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    CAS  PubMed  Google Scholar 

  54. Zhang LZ, Yan QB, Du SX, Su G, Gao HJ (2012) Boron sheet adsorbed on metal surfaces: structures and electronic properties. J Phys Chem C 116:18202–18206

    CAS  Google Scholar 

  55. Liu H, Gao J, Zhao J (2013) From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci Rep 3:3238

    PubMed  PubMed Central  Google Scholar 

  56. Liu Y, Penev ES, Yakobson BI (2013) Probing the synthesis of two-dimensional boron by first-principles computations. Angew Chem Int Ed 52:3156–3159

    CAS  Google Scholar 

  57. Zhang Z, Yang Y, Gao G, Yakobson BI (2015) Two-dimensional boron monolayers mediated by metal substrates. Angew Chem Int Ed 54:13022–13026

    CAS  Google Scholar 

  58. Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD, Liu X, Fisher BL, Santiago U, Guest JR, Yacaman MJ, Ponce A, Oganov AR, Hersam MC, Guisinger NP (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563–568

    CAS  PubMed  Google Scholar 

  60. Feng B, Zhang J, Liu RY, Iimori T, Lian C, Li H, Chen L, Wu K, Meng S, Komori F, Matsuda I (2016) Direct evidence of metallic bands in a monolayer boron sheet. Phys Rev B 94:041408

    Google Scholar 

  61. Wu R, Gozar A, Bozovic I (2019) Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. Npj Quant Mater 4:40

    Google Scholar 

  62. Wu R, Drozdov IK, Eltinge S, Zahl P, Ismail-Beigi S, Bozovic I, Gozar A (2019) Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat Nanotechnol 14:44–49

    CAS  PubMed  Google Scholar 

  63. Kiraly B, Liu X, Wang L, Zhang Z, Mannix AJ, Fisher BL, Yakobson BI, Hersam MC, Guisinger NP (2019) Borophene synthesis on Au(111). ACS Nano 13:3816–3822

    CAS  PubMed  Google Scholar 

  64. Ranjan P, Sahu TK, Bhushan R, Yamijala SS, Late DJ, Kumar P, Vinu A (2019) Freestanding borophene and its hybrids. Adv Mater 31:1900353

    Google Scholar 

  65. Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P, Wu K (2018) Experimental realization of honeycomb borophene. Sci Bull 63:282–286

    CAS  Google Scholar 

  66. Zhu L, Zhao B, Zhang T, Chen G, Yang SA (2019) How is honeycomb borophene stabilized on Al(111)? J Phys Chem C 123:14858–14864

    CAS  Google Scholar 

  67. Shirodkar SN, Penev ES, Yakobson BI (2018) Honeycomb boron: alchemy on aluminum pan? Sci Bull 63:270–271

    CAS  Google Scholar 

  68. Zhang Z, Shirodkar SN, Yang Y, Yakobson BI (2017) Gate-voltage control of borophene structure formation. Angew Chem Int Ed 56:15421–15426

    CAS  Google Scholar 

  69. Wan Z-Q, Lü T-Y, Wang H-Q, Feng YP, Zheng J-C (2019) Review of borophene and its potential applications. Front Phys 14:33403

    Google Scholar 

  70. Zhang Z, Yang Y, Penev ES, Yakobson BI (2017) Elasticity, flexibility, and ideal strength of borophenes. Adv Funct Mater 27:1605059

    Google Scholar 

  71. Grünbaum B (1967) ConVex polytopes. Wiley-Interscience, New York

  72. Domene MC, Fowler P, Mitchell D, Seifert G, Zerbetto F (1997) Energetics of C20 and C22 fullerene and near-fullerene carbon cages. J Phys Chem A 101:8339–8344

    CAS  Google Scholar 

  73. Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat Chem 6:727–731

    CAS  PubMed  Google Scholar 

  74. Szwacki NG, Tymczak CJ (2010) The symmetry of the boron buckyball and a related boron nanotube. Chem Phys Lett 494:80–83

    Google Scholar 

  75. Sadrzadeh A, Pupysheva OV, Singh AK, Yakobson BI (2008) The boron buckyball and its precursors: an electronic structure study. J Physl Chem A 112:13679–13683

    CAS  Google Scholar 

  76. Baruah T, Pederson MR, Zope RR (2008) Vibrational stability and electronic structure of a B80 fullerene. Phys Rev B Condens Matt Mater Phys 78:045408

    Google Scholar 

  77. Ceulemans A, Muya JT, Gopakumar G, Nguyen MT (2008) Chemical bonding in the boron buckyball. Chem Phys Lett 461:226–228

    CAS  Google Scholar 

  78. Gopakumar G, Nguyen MT, Ceulemans A (2008) The boron buckyball has an unexpected Th symmetry. Chem Phys Lett 450:175–177

    CAS  Google Scholar 

  79. Wang XQ (2010) Structural and electronic stability of a volleyball-shaped B80 fullerene. Phys Rev B Condens Matt Mater Phys 82:153409

    Google Scholar 

  80. Li H, Shao N, Shang B, Yuan LF, Yang J, Zeng XC (2010) Icosahedral B12-containing core-shell structures of B80. Chem Commun 46:3878–3880

    CAS  Google Scholar 

  81. Zhao J, Wang L, Li F, Chen Z (2010) B80 and other medium-sized boron clusters: core-shell structures, not hollow cages. J Phys Chem A 114:9969–9972

    CAS  PubMed  Google Scholar 

  82. Lu H, Li SD (2013) Three-chain B6n +14 cages as possible precursors for the syntheses of boron fullerenes. J Chem Phys 139:224307

    PubMed  Google Scholar 

  83. Yan QB, Zheng QR, Su G (2008) Face-centered-cubic B80 metal: density functional theory calculations. Phys Rev B Condens Matt Mater Phys 77:224106

    Google Scholar 

  84. Liu AY, Zope RR, Pederson MR (2008) Structural and bonding properties of bcc-based B80 solids. Phys Rev B Condens Matt Mater Phys 78:155422

    Google Scholar 

  85. Yan QB, Zheng QR, Su G (2009) Face-centered-cubic K3B80 and Mg3B80 metals: covalent and ionic bondings. Phys Rev B Condens Matt Mater Phys 80:104111

    Google Scholar 

  86. Szwacki NG (2008) Boron fullerenes: a first-principles study. Nanoscale Res Lett 3:49–54

    CAS  Google Scholar 

  87. Gribanova TN, Minyaev RM, Minkin VI (2018) Stabilization of boron clusters with classical fullerene structures by combined doping effect: a quantum chemical study. Struct Chem 29:327–340

    CAS  Google Scholar 

  88. Minyaev RM, Gribanova TN (2000) Stabilization of nonclassical types of valence bond orientation at the carbon atom in organoboron compounds. Russ Chem Bull Int Ed 49:783–793

    CAS  Google Scholar 

  89. Minyaev RM, Minkin VI, Starikov AG, Gribanova TN (2001) Induced aromaticity. Russ Chem Bull Int Ed 50:2325–2335

    CAS  Google Scholar 

  90. Gribanova TN, Minyaev RM, Minkin VI (2001) Stabilization of planar hexacoordinate boron: an ab initio study. Zhurnal Neorganicheskoj Khimii 46:1340–1343

    CAS  Google Scholar 

  91. Minyaev RM, Minkin VI, Gribanova TN (2004) A quantum-chemical study of carbon sandwich compounds. Mendeleev Commun 14:96–98

    Google Scholar 

  92. Minyaev RM, Gribanova TN (2005) Carbon, nitrogen, and oxygen hypercoordination in half-sandwich and sandwich structures. Russ Chem Bull Int Ed 54:533–546

    CAS  Google Scholar 

  93. Minyaev RM, Minkin VI, Gribanova TN, Starikov AG, Gapurenko OA (2006) Hypercoordinated carbon in endohedral hydrocarbon cage complexes C@C20H204- and C@C20H20·Li4. Dokl Chem 407:47–50

    CAS  Google Scholar 

  94. Minyaev RM, Minkin VI, Gribanova TN, Starikov AG (2006) Sandwich compounds with central hypercoordinate carbon, nitrogen, and oxygen: a quantum-chemical study. Heteroat Chem 17:464–474

    CAS  Google Scholar 

  95. Gribanova TN, Minyaev RM, Minkin VI (2008) Theoretical design of planar systems with hypercoordinate p-elements of the second period in a nonmetallic environment. Russ J Gen Chem 78:750–768

    CAS  Google Scholar 

  96. Gapurenko OA, Gribanova TN, Minyaev RM, Minkin VI (2007) Hypercoordinate atoms of second-row elements in dodecahedrane endohedral complexes. Russ Chem Bull Int Ed 56:856–862

    CAS  Google Scholar 

  97. Minyaev RM, Gribanova TN, Minkin VI (2013) In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II (second edition): from elements to applications, vol 9. Elsevier, Amsterdam, pp 109–132

    Google Scholar 

  98. Gribanova TN, Minyaev RM, Minkin VI (2009) Sandwich and multidecker sandwich derivatives of first-row elements (Be, C, N). Dokl Chem 424:1–6

    CAS  Google Scholar 

  99. Gribanova TN, Minyaev RM, Minkin VI (2019) Stabilization of non-typical forms of boron clusters by beryllium doping. Chem Phys 522:44–54

    CAS  Google Scholar 

  100. Gribanova TN, Minyaev RM, Minkin VI (2016) Structure and stability of the C-doped boron fullerenes B60C12 and B80C12 with quasi-planar pentacoordinated cage carbon atoms: a quantum-chemical study. Mendeleev Commun 26:485–487

    CAS  Google Scholar 

  101. Gribanova TN, Minyaev RM, Minkin VI (2017) Hypercoordinated carbon in C-doped boron fullerenes: a quantum chemical study. Struct Chem 28:357–369

    CAS  Google Scholar 

  102. Burdett JK, Lee S (1985) Moments method and elemental structures. J Am Chem Soc 107:3063–3082

    CAS  Google Scholar 

  103. Johnston RL, Hoffmann R (1989) Superdense carbon, C8: supercubane or analog of γ-silicon? J Am Chem Soc 111:810–819

    CAS  Google Scholar 

  104. Banfalvi G (2014) Dodecahedrane minibead polymers. RSC Adv 4:3003–3008

    CAS  Google Scholar 

  105. Minyaev RM, Avakyan VE (2010) Supertetrahedrane—a new possible carbon allotrope. Dokl Chem 434:253–256

    CAS  Google Scholar 

  106. Sheng XL, Yan QB, Ye F, Zheng QR, Su G (2011) T-carbon: a novel carbon allotrope. Phys Rev Lett 106:155703

    PubMed  Google Scholar 

  107. Minyaev RM (2012) Supertetrahedrane and its boron analogs. Russ Chem Bull 61:1673–1680

    CAS  Google Scholar 

  108. Minyaev RM, Minkin VI (2013) Supertetrahedral cubane C32H8 and supertetrahedral dodecahedrane C80H20 with tetrahedral C4H fragments in the vertices. Mendeleev Commun 23:131–132

    CAS  Google Scholar 

  109. Minyaev RM, Starikov AG, Minkin VI (2016) Supermolecular design: from molecules to solid states. Int J Quantum Chem 116:259–264

    CAS  Google Scholar 

  110. Eaton PE, Cole TW (1964) The cubane system. J Am Chem Soc 86:962–964

    CAS  Google Scholar 

  111. Maier G, Pfriem S (1978) Tetra-tert-butylcyclopentadienone. Angew Chem Int Ed Eng 17:520–521

    Google Scholar 

  112. Maier G, Neudert J, Wolf O, Pappusch D, Sekiguchi A, Tanaka M, Matsuo T (2002) Tetrakis(trimethylsilyl)tetrahedrane. J Am Chem Soc 124:13819–13826

    CAS  PubMed  Google Scholar 

  113. Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang W, Su H, Niu C (2017) Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat Commun 8:683

    PubMed  PubMed Central  Google Scholar 

  114. Haunschild R, Frenking G (2009) Tetrahedranes. A theoretical study of singlet E4H4 molecules (E = C–Pb and B–Tl). Mol Phys 107:911–922

    CAS  Google Scholar 

  115. Olson JK, Boldyrev AI (2011) Ab initio search for global minimum structures of neutral and anionic B4H4 clusters. Chem Phys 379:1–5

    CAS  Google Scholar 

  116. Mennekes T, Paetzold P, Boese R, Bläser D (1991) Tetra-tertbutyltetraboratetrahedrane. Angew Chem Int Ed Eng 30:173–175

    Google Scholar 

  117. Neu A, Mennekes T, Paetzold P, Englert U, Hofmann M, Schleyer PR (1999) Novel tetraalkyltetraboranes of the type B4R4, B4H2R4 and B4H4R4. Inorg Chim Acta 289:58–69

    CAS  Google Scholar 

  118. Ahmed L, Castillo J, Morrison JA (1992) Chemistry of tetraboron tetrachloride. Synthesis and characterization of tetraboron tetrabromide (B4Br4) and observation of B4BrCl3, B4Br2Cl2, and B4Br3Cl. Inorg Chem 31:1858–1860

    CAS  Google Scholar 

  119. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B Condens Matt Mater Phys 75:153401

    Google Scholar 

  120. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323:610–613

    CAS  PubMed  Google Scholar 

  121. Savchenko A (2009) Materials science: transforming graphene. Science 323:589–590

    CAS  PubMed  Google Scholar 

  122. Steglenko DV, Zaitsev SA, Getmanskii IV, Koval VV, Minyaev RM, Minkin VI (2017) Boron, carbon, and aluminum supertetrahedral graphane analogues. Russ J Inorg Chem 62:802–807

    CAS  Google Scholar 

  123. Getmanskii IV, Minyaev RM, Steglenko DV, Koval VV, Zaitsev SA, Minkin VI (2017) From two- to three-dimensional structures of a supertetrahedral boran using density functional calculations. Angew Chem Int Ed 56:10118–10122

    CAS  Google Scholar 

  124. Frondel C, Marvin UB (1967) Lonsdaleite, a new hexagonal polymorph of diamond. Nature 214:587–589

    CAS  Google Scholar 

  125. Bundy FP, Kasper JS (1967) Hexagonal diamond - a new form of carbon. J Chem Phys 46:3437

    CAS  Google Scholar 

  126. Bhargava S, Bist HD, Sahli S, Aslam M, Tripathi HB (1995) Diamond polytypes in the chemical vapor deposited diamond films. Appl Phys Lett 67:1706

    CAS  Google Scholar 

  127. Gao Y, Wu W, Guo PJ, Zhong C, Yang SA, Liu K, Lu ZY (2019) Hexagonal supertetrahedral boron: a topological metal with multiple spin-orbit-free emergent fermions. Phys Rev Mater 3:044202

    CAS  Google Scholar 

  128. Getmanskii IV, Minyaev RM, Koval VV, Minkin VI (2018) Quantum chemical modeling of solid-state B4X structures containing tetrahedral B4 units with X = B, C, Al, Si. Mendeleev Commu 28:173–175

    CAS  Google Scholar 

  129. Minyaev RM, Gribanova TN, Minkin VI (2013) Structural stability of supertetrahedral [n]-prismanes and their boron analogues: a quantum-chemical study. Dokl Chem 453:270–272

    CAS  Google Scholar 

  130. Minyaev RM, Popov IA, Koval VV, Boldyrev AI, Minkin VI (2015) Supertetrahedral B80H20, C80H20 , and Al80H20 analogs of dodecahedrane and their substituted molecules. Struct Chem 26:223–229

    CAS  Google Scholar 

  131. Gapurenko OA, Minyaev RM, Fedik NS, Koval VV, Boldyrev AI, Minkin VI (2019) Structure and bonding of new boron and carbon superpolyhedra. Struct Chem 30:805–814

    CAS  Google Scholar 

  132. Wells AF (1986) Structural Inorganic Chemistry5th edn. Clarendon Press, Oxford

    Google Scholar 

  133. Casanova J (1998) The borane, carborane and carbocation continuum. Wiley, Chichester

    Google Scholar 

  134. Wade K (1976) Structural and bonding patterns in cluster chemistry. Adv Inorg Chem Radiochem 18(C):1–66

    CAS  Google Scholar 

  135. Minkin VI, Glukhovtsev MN, Simkin BYA (1994) Aromaticity and Antiaromaticity: Electronic and Structural Aspects. Wiley, New York

    Google Scholar 

  136. Schell G, Winter H, Rietsche H, Gompf F (1982) Electronic structure and superconductivity in metal hexaborides. Phys Rev B 25:1589–1599

    CAS  Google Scholar 

  137. Lundstrom T (1985) Structure, defects and properties of some refractory borides. Pure Appl Chem 57:1383–1390

    Google Scholar 

  138. Ishii M, Aono M, Muranaka S, Kawai S (1976) Raman spectra of metallic and semiconducting metal hexaborides (MB6). Solid State Commun 20:437–440

    CAS  Google Scholar 

  139. Zhou XF, Oganov AR, Wang Z, Popov IA, Boldyrev AI, Wang HT (2016) Two-dimensional magnetic boron. Phys Rev B 93:085406

    Google Scholar 

  140. Tkachenko NV, Steglenko D, Fedik N, Boldyreva NM, Minyaev RM, Minkin VI, Boldyrev AI (2019) Superoctahedral two-dimensional metallic boron with peculiar magnetic properties. Phys Chem Chem Phys 21:19764–19771

    CAS  PubMed  Google Scholar 

  141. Hayami W, Otani S (2011) Structural stability of boron clusters with octahedral and tetrahedral symmetries. J Phys Chem A 115:8204–8207

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, Southern Federal University, 2020, No. 0852-2020-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan M. Minyaev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribanova, T.N., Minyaev, R.M., Minkin, V.I. et al. Novel architectures of boron. Struct Chem 31, 2105–2128 (2020). https://doi.org/10.1007/s11224-020-01606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01606-9

Keywords

Navigation