Skip to main content
Log in

New N-heterocyclic plumbylenes (NHPbs) and their complexes with palladium and platinum by DFT

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Following our quest for stable group 14 divalents, novel N-heterocyclic plumbylenes (NHPbs), composed of 2,4,6-cycloheptatriene-2,7-diazaplumbylene (1), benzannulated with one (2), two (3, 4), and three benzene rings (5), are compared and contrasted at the density functional theory level. Results indicate that in going from 1 to 5, the absolute values of singlet-triplet energy gap (ΔEs-t) and band gap (ΔEH-L) increase, while nucleophilicity (N), electrophilicity (ω), and chemical potential (μ) decrease. The most benzannulated structure, ([a,c,e]tribenzo)cyclohepta-2,7-diazaplumbylene (5), turns out as the most stable plumbylene for showing the most negative ΔEs-t of − 194.94 kcal/mol. Furthermore, 5 shows the highest ΔEH-L (− 2.75 eV), with the lowest N (1.31 eV), ω (8.20 eV), μ (− 7.15 eV), and charge of (+ 0.736) on Pb atom. Isodesmic reactions of 1-5 with common transition metal halides, MX2, give forty new metal complexes of 1M-X-5M-X, where M = Pt and Pd, while X = F, Cl, Br, and I. Their complexation energies (ΔECom) indicate that 1-5 are rather stronger ligands with Pt than Pd. Bader’s atoms in molecules (AIM) and NBO analyses show the partial covalent and partial electrostatic nature of Pb-M bonds.

We have scrutinized novel N-heterocyclic plumbylenes (NHPbs: 1-5), by DFT. Structure 5 turns out as the most stable plumbylene for showing the highest ΔEs-t. It shows the highest ΔEH-L with the lowest N, ω, μ, and charge on Pb atom. The results show that NHPbs form stronger complexes with Pt atom than Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petz W (1986). Chem Rev 86:1019–1047

    CAS  Google Scholar 

  2. Tokitoh N, Okazaki R (2000). Coord Chem Rev 210:251–277

    CAS  Google Scholar 

  3. Mizuhata Y, Sasamori T, Tokitoh N (2009). Chem Rev 109:3479–3511

    CAS  PubMed  Google Scholar 

  4. Baumgartner J, Marschner C (2014). Rev Inorg Chem 34:119–152

    CAS  Google Scholar 

  5. Zabula AV, Hahn FE (2008). Eur J Inorg Chem 2008:5165–5179

    Google Scholar 

  6. Krupski S, Pöttgen R, Schellenberg I, Hahn FE (2014). Dalt Trans 43:173–181

    CAS  Google Scholar 

  7. Dasgupta R, Das S, Hiwase S, Pati SK, Khan S (2019). Organometallics 38:1429–1435

    CAS  Google Scholar 

  8. Schneider J, Sindlinger CP, Freitag SM, Schubert H, Wesemann L (2017). Angew Chemie 129:339–343

    Google Scholar 

  9. Wu Y, Shan C, Sun Y, Chen P, Ying J, Zhu J, Liu LL, Zhao Y (2016). Chem Commun 52:13799–13802

    CAS  Google Scholar 

  10. Hadlington TJ, Hermann M, Frenking G, Jones C (2014). J Am Chem Soc 136:3028–3031

    CAS  PubMed  Google Scholar 

  11. Heitmann D, Pape T, Hepp A, Mück-Lichtenfeld C, Grimme S, Hahn FE (2011). J Am Chem Soc 133:11118–11120

    CAS  PubMed  Google Scholar 

  12. Arp H, Baumgartner J, Marschner C, Zark P, Müller T (2012). J Am Chem Soc 134:10864–10875

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Braunschweig H, Celik MA, Dewhurst RD, Heid M, Hupp F, Sen SS (2015). Chem Sci 6:425–435

    CAS  PubMed  Google Scholar 

  14. Tapu D, Dixon DA, Roe C (2009). Chem Rev 109:3385–3407

    CAS  PubMed  Google Scholar 

  15. Arduengo III AJ, Kline M, Calabrese JC, Davidson F (1991). J Am Chem Soc 113:9704–9705

    CAS  Google Scholar 

  16. Denk M, Lennon R, Hayashi R, West R, Belyakov AV, Verne HP, Haaland A, Wagner M, Metzler N (1994). J Am Chem Soc 116:2691–2692

    CAS  Google Scholar 

  17. Herrmann WA, Denk M, Behm J, Scherer W, Klingan F, Bock H, Solouki B, Wagner M (1992). Angew Chemie 104:1489–1492

    CAS  Google Scholar 

  18. Gans-Eichler T, Gudat D, Nieger M (2002). Angew Chemie Int Ed 41:1888–1891

    CAS  Google Scholar 

  19. Charmant JPH, Haddow MF, Hahn FE, Heitmann D, Fröhlich R, Mansell SM, Russell CA, Wass DF (2008). Dalt Trans:6055–6059

  20. Hahn FE, Heitmann D, Pape T (2008). Eur J Inorg Chem 2008:1039–1041

    Google Scholar 

  21. Connor EF, Nyce GW, Myers M, Möck A, Hedrick JL (2002). J Am Chem Soc 124:914–915

    CAS  PubMed  Google Scholar 

  22. Jeong W, Hedrick JL, Waymouth RM (2007). J Am Chem Soc 129:8414–8415

    CAS  PubMed  Google Scholar 

  23. Chang YA, Waymouth RM (2017). J Polym Sci Part A Polym Chem 55:2892–2902

    CAS  Google Scholar 

  24. Melaimi M, Soleilhavoup M, Bertrand G (2010). Angew Chemie Int Ed 49:8810–8849

    CAS  Google Scholar 

  25. Hahn FE, Jahnke MC (2008). Angew Chemie Int Ed 47:3122–3172

    CAS  Google Scholar 

  26. Hill NJ, West R (2004). J Organomet Chem 689:4165–4183

    CAS  Google Scholar 

  27. Zabula AV, Hahn FE, Pape T, Hepp A (2007). Organometallics 26:1972–1980

    CAS  Google Scholar 

  28. Kim SB, Sinsermsuksakul P, Pike RD, Gordon RG (2014). Chem Mater 26:3065–3073

    CAS  Google Scholar 

  29. Parameswaran P, Frenking G (2009). Chem Eur J 15:8807–8816

    CAS  PubMed  Google Scholar 

  30. Hupp F, Ma M, Kroll F, Jimenez-Halla JOC, Dewhurst RD, Radacki K, Stasch A, Jones C, Braunschweig H (2014). Chem Eur J 20:16888–16898

    CAS  PubMed  Google Scholar 

  31. Lin JCY, Huang RTW, Lee CS, Bhattacharyya A, Hwang WS, Lin IJB (2009). Chem Rev 109:3561–3598

    CAS  PubMed  Google Scholar 

  32. Böhm VPW, Weskamp T, Gstöttmayr CWK, Herrmann WA (2000). Angew Chemie Int Ed 39:1602–1604

    Google Scholar 

  33. Sanford MS, Love JA, Grubbs RH (2001). J Am Chem Soc 123:6543–6554

    CAS  PubMed  Google Scholar 

  34. Muehlhofer M, Strassner T, Herrmann WA (2002). Angew Chemie Int Ed 41:1745–1747

    CAS  Google Scholar 

  35. Zhong F, Yang X, Shen L, Zhao Y, Ma H, Wu B, Yang X-J (2016). Inorg Chem 55:9112–9120

    CAS  PubMed  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993). J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  37. Gordon MS, Schmidt MW (2005) Theory and applications of computational chemistry. Elsevier, pp 1167–1189

  38. Domingo LR, Pérez P (2011). Org Biomol Chem 9:7168–7175

    CAS  PubMed  Google Scholar 

  39. Chattaraj PK, Giri S, Duley S, Phys J (2011). Chem A 116:790–791

    Google Scholar 

  40. Smit B, Frenkel D (1989). Mol Phys 68:951–958

    CAS  Google Scholar 

  41. Glendening ED, Landis CR, Weinhold F (2012) Wiley Interdiscip. Rev Comput Mol Sci 2:1–42

    CAS  Google Scholar 

  42. Ayoubi-Chianeh M, Kassaee MZ, Ashenagar S, Cummings PT (2019). J Phys Org Chem:e3956

  43. Ayoubi-Chianeh M, Kassaee MZ (2019). Res Chem Intermed 45:4677–4691

    CAS  Google Scholar 

  44. Takagi N, Frenking G (2011). Theor Chem Accounts 129:615–623

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Seyed Abdolreza Miran, Maniya Sadat Miran, and Seyed Manny Miran for their continued encouragement and moral support.

Funding

We gratefully acknowledge Tarbiat Modares University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Zaman Kassaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebi, N., Kassaee, M.Z. New N-heterocyclic plumbylenes (NHPbs) and their complexes with palladium and platinum by DFT. Struct Chem 32, 731–757 (2021). https://doi.org/10.1007/s11224-020-01603-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01603-y

Keywords

Navigation