Skip to main content
Log in

Experimental distribution of electron density in crystals of Ph3Sb(O2CCH=CH–CH=CH–CH3)2 complex: the selection of a reference point for the source function in the absence of a bond critical point between atoms

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this article, we report on the results of experimental and theoretical (DFT calculation of an isolated molecule) investigation of electron density in a triphenylantimony disorbate complex (triphenylantimony bis(hexa-2,4-dienoate), Ph3Sb(O2CCH=CH–CH=CH–CH3)2 (1)). A topological analysis of the electron density was carried out in the framework of the quantum theory of atoms in molecules (QTAIM), which allows to study the nature of chemical bonds and the molecular graph in Ph3Sb(O2CCH=CH–CH=CH–CH3)2 complex. The molecular graph is an important tool for determining the interacting atoms. However, the molecular graph of the triphenylantimony disorbate complex did not show the presence of the “expected” intramolecular interactions between the antimony atom and the carbonyl oxygen one. Such a situation can be caused by electron density low curvature between these atoms. It is extremely difficult case, and sometimes it is not possible to find all the “expected” bond paths and critical points (3,−1). Thus, the molecular graph for this class of compounds does not provide a definitive picture of the chemical bonding and should be complemented with other descriptors, such as а source function (SF) and non-covalent interaction (NCI) index. It was found that in some cases using the SF on the NCI isosurface allows to interpret intramolecular interactions in the absence of a bond critical point more correctly. In this article, presence of intramolecular interaction in the absence of a bond critical point between the antimony atom and the carboxylate oxygen one was shown. The carboxylate fragment always acts as a source of the electron density for the Sb…O(carbonyl) interactions, whereas the antimony atom can be both a source and a sink for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bajpai K, Singhal R, Srivastava RC (1979). Indian J Chem 18A:73–78

    CAS  Google Scholar 

  2. Singhal K, Rastogi R, Raj P (1987). Indian J Chem 26A:146–150

    CAS  Google Scholar 

  3. Ma Y, Li J, Xuan Z, Liu R (2001). J Organomet Chem 620:235–242

    CAS  Google Scholar 

  4. Li J-S, Ma Y-Q, Cui J-R, Wang R-Q (2001). Appl Organomet Chem 15:639–645

    CAS  Google Scholar 

  5. Yu L, Ma Y-Q, Wang G-C, Li J-S (2004). Heteroat Chem 15:32–36

    CAS  Google Scholar 

  6. Islam A, Rodrigues BL, Marzano IM, Perreira-Maia EC, Dittz D, Paz Lopes MT, Ishfaq M, Frézard F, Demicheli C (2016). Eur J Med Chem 109:254–267

    CAS  PubMed  Google Scholar 

  7. Islam A, da Silva J, Berbet F, da Silva S, Rodrigues B, Beraldo H, Melo M, Frézard F, Demicheli C (2014). Molecules 19:6009–6030

    PubMed  PubMed Central  Google Scholar 

  8. Liu R-C, Ma Y-Q, Yu L, Li J-S, Cui J-R, Wang R-Q (2003). Appl Organomet Chem 17:662–668

    CAS  Google Scholar 

  9. Bara CSA, Silvestru C, Haiduc I (1991). Anticancer Res 11:1651–1655

    CAS  PubMed  Google Scholar 

  10. Passarelli J, Murphy M, Del Re R, Sortland M, Dousharm L, Vockenhuber M, Ekinci Y, Neisser M, Freedman DA (2015). Brainard RL Proc SPIE 9425:94250T

    Google Scholar 

  11. Fukin GK, Baranov EV, Cherkasov AV, Rumyantsev RV (2019). Russ J Coord Chem 45:585–591

    CAS  Google Scholar 

  12. Fukin GK, Samsonov MA, Baranov EV, Cherkasov AV, Rumyantsev RV, Arapova AV (2018). Russ J Coord Chem 44:626–634

    CAS  Google Scholar 

  13. Fukin GK, Samsonov MA, Arapova AV, Mazur AS, Artamonova TO, Khodorkovskiy MA, Vasilyev AV (2017). J Solid State Chem 254:32–39

    CAS  Google Scholar 

  14. Fukin GK, Samsonov MA, Kalistratova OS, Gushchin AV (2016). Struct Chem 27:357–365

    CAS  Google Scholar 

  15. Farrugia LJ, Evans C, Lentz D, Roemer M (2009). J Am Chem Soc 131:1251–1268

    CAS  PubMed  Google Scholar 

  16. Smol’yakov AF, Dolgushin FM, Antipin MY (2012). Russ Chem Bull 61:2204–2211

    Google Scholar 

  17. Lugan N, Fernández I, Brousses R, Valyaev DA, Lavigne G, Ustynyuk NA (2013). Dalton Trans 42:898–901

    CAS  PubMed  Google Scholar 

  18. Smol’yakov AF, Dolgushin FM, Ginzburg AG, Bashilov VV, Antipin MY (2012). J Mol Struct 1014:81–91

    Google Scholar 

  19. Kamiński R, Herbaczyńska B, Srebro M, Pietrzykowski A, Michalak A, Jerzykiewicz LB, Woźniak K (2011). Phys Chem Chem Phys 13:10280–10284

    PubMed  Google Scholar 

  20. Makal AM, Plażuk D, Zakrzewski J, Misterkiewicz B, Woźniak K (2010). Inorg Chem 49:4046–4059

    CAS  PubMed  Google Scholar 

  21. Scheins S, Messerschmidt M, Gembicky M, Pitak M, Volkov A, Coppens P, Harvey BG, Turpin GC, Arif AM, Ernst RD (2009). J Am Chem Soc 131:6154–6160

    CAS  PubMed  Google Scholar 

  22. Fukin GK, Cherkasov AV, Rumyantcev RV, Grishina NY, Sazonova EV, Artemov AN, Stash AI (2019). Mendeleev Commun 29:346–348

    CAS  Google Scholar 

  23. Fukin GK, Cherkasov AV, Baranov EV, Rumyantcev RV, Sazonova EV, Artemov AN (2019). ChemistrySelect 4:10976–10982

    CAS  Google Scholar 

  24. Bader RFW, Gatti C (1998). Chem Phys Lett 287:233–238 and ref. therein

    CAS  Google Scholar 

  25. Farrugia LJ, Macchi P (2009). J Phys Chem A 113:10058–10067 and ref. therein

    CAS  PubMed  Google Scholar 

  26. Gatti C (2012) In: Stalke D (ed) Electron Density and Chemical Bonding II 147:193–285 Springer, Berlin, Heidelberg, and ref. therein

  27. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-Garciá J, Cohen AJ, Yang W (2010). J Am Chem Soc 132:6498–6506

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Contreras-Garciá J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011). J Chem Theory Comput 7:625–632

    PubMed  PubMed Central  Google Scholar 

  29. Contreras-Garciá J, Johnson ER, Yang W (2011). J Phys Chem A 115:12983–12990

    PubMed  Google Scholar 

  30. Dodonov VA, Gushchin AV, Brilkina TG (1985). Zh Obshch Khim 55:73–80

    CAS  Google Scholar 

  31. Sheldrick GM (2000) SHELXTL V.6.12 Structure determination software suite Bruker AXS Madison

  32. CrysAlis Pro - Software Package Agilent Technologies (2012)

  33. Hansen NK, Coppens P (1978). Acta Crystallogr Sect A 34:909–921

    Google Scholar 

  34. Jelsch C, Guillot B, Lagoutte A, Lecomte C (2005). J Appl Crystallogr 38:38–54

    Google Scholar 

  35. Allen F, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987). J Chem Soc Perkin Trans 2:S1–S19

    Google Scholar 

  36. Hirshfeld F (1976). Acta Crystallogr Sect A 32:239–244

    Google Scholar 

  37. Stash A, Tsirelson V (2002). J Appl Crystallogr 35(3):371–373

    CAS  Google Scholar 

  38. Stash AI, Tsirelson VG (2005). Crystallography Rep 50:177–184

    CAS  Google Scholar 

  39. Stash AI, Tsirelson VG (2014). J Appl Crystallogr 47:2086–2089

    CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D01 Gaussian Inc Wallingford CT USA

  41. Keith TA (2019) AIMAll v19.10.12 TK Gristmill Software Overland Park KS USA aim.tkgristmill.com

  42. Cambridge Structural Database Version 5.40 University of Cambridge UK 2019

  43. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016). Acta Crystallogr Sect B 72:171–179

    CAS  Google Scholar 

  44. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc. Dalton Trans:1349–1356

  45. Batsanov SS (1991). Russ J Inorg Chem 36:3015–3037

    CAS  Google Scholar 

  46. Janiak C (2000). J Chem Soc Dalton Trans:3885–3896

  47. Fukin GK, Baranov EV, Jelsch C, Guillot B, Poddel’sky AI, Cherkasov VK, Abakumov GA (2011). J Phys Chem A 115:8271–8281

    CAS  PubMed  Google Scholar 

  48. Fukin GK, Samsonov MA, Baranov EV, Poddel’sky AI, Cherkasov VK (2016). Russ Chem Bull 65:54–60

    CAS  Google Scholar 

  49. Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford

    Google Scholar 

  50. Espinosa E, Molins E, Lecomte C (1998). Chem Phys Lett 285:170–173

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (17-03-01257). Part of the work on DFT calculation was financially supported by the Russian Science Foundation (17-73-20302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgy K. Fukin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 95 kb)

ESM 2

(PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukin, G.K., Baranov, E.V., Rumyantcev, R.V. et al. Experimental distribution of electron density in crystals of Ph3Sb(O2CCH=CH–CH=CH–CH3)2 complex: the selection of a reference point for the source function in the absence of a bond critical point between atoms. Struct Chem 31, 1841–1849 (2020). https://doi.org/10.1007/s11224-020-01548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01548-2

Keywords

Navigation