Skip to main content
Log in

Construction of elementary reaction paths of pure and mixed Argon-Xenon clusters : a parallel tempering based study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The problem of studying structural transformation for going from one isomer to another through a transition state is one of considerable interest in chemistry. In this work, we would like to examine the efficiency of the replica exchange Monte Carlo strategy or parallel tempering to search potential energy surface describing the interaction between atoms in noble gas clusters. The systems chosen are both a pure noble gas cluster as well as those formed by two different noble gas entities. Location of minimal structures as well as transition state with the path connecting these three critical points has been carried out for different sizes. To understand the working principles of the parallel tempering method, distribution of structures found in different replicas has been analyzed and insights have been given as to how parallel tempering can be use effectively to handle this problem effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bell S, Crighton JS (1984) J Chem Phys 80:2464

    CAS  Google Scholar 

  2. Rothman MJ, Lohr LL (1980) Chem Phys Lett 70:405

    CAS  Google Scholar 

  3. Burkert U, Allinger NL (1982) J Comput Chem 3:40

    CAS  Google Scholar 

  4. Fukui K (1981) Acc Chem Res 14:363

    CAS  Google Scholar 

  5. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    CAS  Google Scholar 

  6. Pathak AK, Mukherjee T, Maity DK (2007) J Chem Phys 127:044304

    CAS  PubMed  Google Scholar 

  7. Price EA, Hammer NI, Johnson MA (2004) The Journal of Physical Chemistry A 108:3910

  8. Xantheas SS (1995) J Am Chem Soc 117:10373

    CAS  Google Scholar 

  9. Chaudhury P, Bhattacharyya S (2000) Int J Quantum Chem 76:161

    CAS  Google Scholar 

  10. Chaudhury P, Bhattacharyya S (1998) J Mol Struct THEOCHEM 429:175

    CAS  Google Scholar 

  11. Chaudhury P, Bhattacharyya S, Quapp W (2000) Chem Phys 253:295

    CAS  Google Scholar 

  12. Guha S, Chaudhury P (2010) J Mol Struct THEOCHEM 945:12

    CAS  Google Scholar 

  13. Biring SK, Chaudhury P (2010) Chem Phys 377:46

    CAS  Google Scholar 

  14. Quapp W (1996) Chemi Phys Lett 253:286. ISSN 0009-2614, http://www.sciencedirect.com/science/article/pii/0009261496002552

    CAS  Google Scholar 

  15. Sheppard D, Terrell R, Henkelman G (2008) J Chem Phys 128:134106

    PubMed  Google Scholar 

  16. Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jónsson H (2004) J Chem Phys 121:9776

    CAS  PubMed  Google Scholar 

  17. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    CAS  Google Scholar 

  18. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978

    CAS  Google Scholar 

  19. Henkelman G, Jónsson H (1999) J Chem Phys 111:7010

    CAS  Google Scholar 

  20. Wales DJ (1990) Chem Phys Lett 166:419

    CAS  Google Scholar 

  21. Wales DJ, Bogdan TV (2006) J Phys Chem B 110:20765

    CAS  PubMed  Google Scholar 

  22. Wales DJ, Doye JPK (2003) J Chem Phys 119:12409

    CAS  Google Scholar 

  23. Carr JM, Trygubenko SA, Wales DJ (2005) J Chem Phys 122:234903

    PubMed  Google Scholar 

  24. Wales DJ (1992) J Chem Soc Faraday Trans 88:653

    CAS  Google Scholar 

  25. Wales DJ (1993) J Chem Soc Faraday Trans 89:1305

    CAS  Google Scholar 

  26. Naskar P, Chaudhury P (2016a) Phys Chem Chem Phys 18:16245

    CAS  PubMed  Google Scholar 

  27. Naskar P, Chaudhury P (2016b) RSC Adv 6:12315

    CAS  Google Scholar 

  28. Mirdha RH, Naskar P, Chaudhury P (2018) Struct Chem 29:523

    CAS  Google Scholar 

  29. Naskar P, Roy R, Talukder S, Chaudhury P (2018a) Mol Phys 116:2172

    CAS  Google Scholar 

  30. Naskar P, Talukder S, Ghosh S, Chaudhury P (2019) Int J Quantum Chem 119:e25927

    Google Scholar 

  31. Wales DJ, Doye JPK (1997) J Phys Chem A 101:5111

    CAS  Google Scholar 

  32. Swendsen RH, Wang J-S (1986) Phys Rev Lett 57:2607

    CAS  PubMed  Google Scholar 

  33. Hansmann UH (1997) Chem Phys Lett 281:140

    CAS  Google Scholar 

  34. Falcioni M, Deem MW (1999) J Chem Phys 110:1754

    CAS  Google Scholar 

  35. Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141

    CAS  Google Scholar 

  36. Manousiouthakis VI, Deem MW (1999) J Chem Phys 110:2753

    CAS  Google Scholar 

  37. Kofke DA (2002) J Chem Phys 117:6911

    CAS  Google Scholar 

  38. Kofke DA (2004) J Chem Phys 121:1167

    CAS  PubMed  Google Scholar 

  39. Faller R, Yan Q, de Pablo JJ (2002) J Chem Phys 116:5419

    CAS  Google Scholar 

  40. Sugita Y, Okamoto Y (2000) Chem Phys Lett 329:261

    CAS  Google Scholar 

  41. Naskar P (2019) Mol Phys 117:575

    CAS  Google Scholar 

  42. Ghorai S, Naskar P, Chaudhury P (2018) Phys Chem Chem Phys 20:22379

    CAS  PubMed  Google Scholar 

  43. Earl DJ, Deem MW (2005) Phys Chem Chem Phys 7:3910

    CAS  PubMed  Google Scholar 

  44. Habeck M, Nilges M, Rieping W (2005) Phys Rev Lett 94:018105

    PubMed  Google Scholar 

  45. Merlitz H, Wenzel W (2002) Chem Phys Lett 362:271

    CAS  Google Scholar 

  46. Talukder S, Sen S, Neogi SG, Chaudhury P (2013) J Chem Phys 139:164312

    PubMed  Google Scholar 

  47. Ghorai S, Chaudhury P (2018) J Comput Chem 39:827

    CAS  PubMed  Google Scholar 

  48. Dellago C, Bolhuis PG, Chandler D (1998) J Chem Phys 108:9236

    CAS  Google Scholar 

  49. Trygubenko SA, Wales DJ (2004) J Chem Phys 120:2082

    CAS  PubMed  Google Scholar 

  50. Halgren TA, Lipscomb WN (1977b) Chem Phys Lett 49:225

    CAS  Google Scholar 

  51. Birkholz AB, Schlegel HB (2015) J Chem Phys 143:244101

    PubMed  Google Scholar 

  52. De DS, Krummenacher M, Schaefer B, Goedecker S (2019) Phys Rev Lett 123:206102

    CAS  PubMed  Google Scholar 

  53. Pullan WJ (1997) J Comput Chem 18:1096

    CAS  Google Scholar 

Download references

Funding

S.G. thanks University Grants Commission, New Delhi, India, for the award of a Senior Research Fellowship [Ref. No: 21/06/2015(i)EU-V] and P.N. sincerely acknowledges Council of Scientific & Industrial Research : Human Resource Development Group, New Delhi, India, for the award of a Senior Research Fellowship [ File No. : 09/028(0938)/2014-EMR-I ].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Ghorai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

We did not violate any ethical standard.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Naskar, P. & Chaudhury, P. Construction of elementary reaction paths of pure and mixed Argon-Xenon clusters : a parallel tempering based study. Struct Chem 31, 1429–1439 (2020). https://doi.org/10.1007/s11224-019-01486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01486-8

Keywords

Navigation