Skip to main content
Log in

On the buckling behavior of functionalized single- and double-walled carbon nanotubes with azobenzene in the aqueous environment: a molecular dynamics study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, the buckling behavior of covalently functionalized single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) with azobenzene is investigated in vacuum and aqueous environments using the classical molecular dynamics (MD) simulations. According to the results, functionalization increases the critical buckling force considerably, whereas it reduces the critical strain. It is observed that the critical buckling force of DWCNTs is not as sensitive as that of its constituent inner and outer functionalized SWCNTs. Also, it is observed that increasing the weight percentage of azobenzene results in increasing the critical buckling force of functionalized CNTs, whereas the critical strain decreases. Further, it is observed that critical buckling force of functionalized CNTs in the aqueous environment increases compared to that of functionalized CNTs in vacuum, while the critical strain does not change significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317

    CAS  PubMed  Google Scholar 

  2. Aloui W, Ltaief A, Bouazizi A (2013) Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications. Superlattice Microst 64:581

    CAS  Google Scholar 

  3. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM et al (1999) Carbon nanotube actuators. Science 284:1340

    CAS  PubMed  Google Scholar 

  4. Wang CM, Zhang YY, Xiang Y, Reddy JN (2010) Recent studies on buckling of carbon nanotubes. Appl Mech Rev 63:030804

    Google Scholar 

  5. Ansari R, Ajori S, Sadeghi F (2015) Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators. J Phys Chem Solids 85:264–272

    CAS  Google Scholar 

  6. Zhu J, Kim JD, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3(8):1107

    CAS  Google Scholar 

  7. Chang C-M, Liu Y-L (2010) Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites. Carbon 48(4):1289

    CAS  Google Scholar 

  8. Yuan J-M, Fan Z-F, Chen X-H, Chen X-H, Wu Z-J, He L-P (2009) Preparation of polystyrene-multi walled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50(14):3285

    CAS  Google Scholar 

  9. Ran M, Sun W, Liu Y, Chu W, Jiang C (2013) Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition. J Solid State Chem 197:517

    CAS  Google Scholar 

  10. Pełech I, Narkiewicz U, Moszynski D, Pełech R (2012) Simultaneous purification and functionalization of carbonnanotubes using chlorination. J Mater Res 27:2368

    Google Scholar 

  11. Czerw R, Guo Z, Ajayan PM, Sun Y-P, Carroll DL (2001) Organization of polymers onto carbon nanotubes: a route to nanoscale assembly. Nano Lett 1:423–427

    CAS  Google Scholar 

  12. Ajori S, Parsapour H, Ansari R (2019) Structural properties and buckling behavior of non-covalently functionalized single-and double-walled carbon nanotubes with pyrene-linked polyamide in aqueous environment using molecular dynamics simulations. J Phys Chem Solids 131:79–85

    CAS  Google Scholar 

  13. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A: Appl Sci Manufact 41(10):1345

    Google Scholar 

  14. Li XL, Qin YJ, Picraux ST, Guo ZX (2011) Noncovalent assembly of carbon nanotube inorganic hybrids. J Mater Chem 21(21):7527

    CAS  Google Scholar 

  15. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357

    CAS  Google Scholar 

  16. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366

    CAS  PubMed  Google Scholar 

  17. Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476

    CAS  Google Scholar 

  18. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180

    CAS  PubMed  Google Scholar 

  19. Ansari R, Ajori S, Rouhi S (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci 332:640–647

    CAS  Google Scholar 

  20. Garate H, Falco AD, Moreno MS, Fascio ML, Goyanes S, D’Accorso NB (2012) Influence of the electronic distribution of polymers in the spatial conformation of polymer grafted carbon nanotube composites. Physica B 407(16):3184

    CAS  Google Scholar 

  21. Liu FL, Xiao P, Fang HL, Dai HF, Qiao L, Zhang YH (2011) Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Phys E 44(2):367

    CAS  Google Scholar 

  22. Ajori S, Ansari R (2015) Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations. Physica B 459:58

    CAS  Google Scholar 

  23. Ansari R, Ajori S, Ameri A (2014) Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl. Chem Phys Lett 616-617:120

    CAS  Google Scholar 

  24. Ansari R, Ajori S, Rouhi S (2015) Elastic properties and buckling behavior of single-walled carbon nanotubes functionalized with diethyltoluenediamines using molecular dynamics simulations. Superlattice Miscrostruct 77:54

    CAS  Google Scholar 

  25. Lu YL, Ma J, Xu TY, Wang WC, Jiang Y, Zhang LQ (2017) Preparation and properties of natural rubber reinforced with polydopamine-coating modified carbon nanotubes. Express Polym Lett 11(1):21–34)

    CAS  Google Scholar 

  26. Banks-Sills L, Shiber DG, Fourman V, Eliasi R, Shlayer A (2016) Experimental determination of mechanical properties of PMMA reinforced with functionalized CNTs. Compos Part B 95:335–345

    CAS  Google Scholar 

  27. Kumar AM, Gasem ZM (2015) Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings. Surf Coat Technol 276:416–423

    Google Scholar 

  28. Sharma S, Chandra R, Kumar P, Kumar N (2016) Molecular dynamics simulation of functionalized SWCNT–polymer composites. J Compos Mater https://doi.org/10.1177/0021998316628973

  29. Yuan Z, Lu Z, Chen M, Yang Z, Xie F (2015) Interfacial properties of carboxylic acid functionalized CNT/polyethylene composites: a molecular dynamics simulation study. Appl Surf Sci 351:1043–1052

    CAS  Google Scholar 

  30. Ajori S, Parsapour H, Ansari R, Ameri A (2019) Buckling behavior of various metallic glass nanocomposites reinforced by carbon nanotube and Cu nanowire: a molecular dynamics simulation study. Mater Res Express 6(9):095070

    CAS  Google Scholar 

  31. Haghighi S, Ansari R, Ajori S (2019) Influence of polyethylene cross-linked functionalization on the interfacial properties of carbon nanotube-reinforced polymer nanocomposites: a molecular dynamics study. J Mol Model 25(4):105

    CAS  PubMed  Google Scholar 

  32. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986

    CAS  Google Scholar 

  33. Russew MM, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348

    CAS  PubMed  Google Scholar 

  34. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422

    CAS  PubMed  Google Scholar 

  35. Beharry AA, Sadovski O, Woolley GA (2011) Azobenzene photoswitching without ultraviolet light. J Am Chem Soc 133:19684–19687

    CAS  PubMed  Google Scholar 

  36. Nedelchev L, Nazarova D, Dragostinova V (2013) Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence. J Photochem Photobiol A Chem 261:26–30

    CAS  Google Scholar 

  37. Basuki SW, Schneider V, Strunskus T, Elbahri M, Faupel F (2015) Light-controlled conductance switching in azobenzene-containing MWCNT-polymer nanocomposites. ACS Appl Mater Interfaces 7(21):11257–11262

    CAS  PubMed  Google Scholar 

  38. Pipolo S, Benassi E, Corni S (2013) Structural properties of azobenzene self-assembled monolayers by atomistic simulations. Langmuir 29(33):10505–10512

    CAS  PubMed  Google Scholar 

  39. Zhou X, Zifer T, Wong BM, Krafcik KL, Léonard F, Vance AL (2009) Color detection using chromophore-nanotube hybrid devices. Nano Lett 9:1028–1033

    PubMed  PubMed Central  Google Scholar 

  40. Maggini L, Marangoni T, Georges B, Malicka JM, Yoosaf K, Minoia A, Lazzaroni R, Armaroli N, Bonifazi D (2013) Azobenzene-based supramolecular polymers for processing MWCNTs. Nanoscale 5:634–645

    CAS  PubMed  Google Scholar 

  41. Kolpak AM, Grossman JC (2011) Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett 11:3156

    CAS  PubMed  Google Scholar 

  42. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM et al (1995) A second generation force field for the simulation of proteins and nucleic acids. J Am Chem Soc 117:5179

    CAS  Google Scholar 

  43. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    CAS  PubMed  Google Scholar 

  44. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1

    CAS  Google Scholar 

  45. Zhang CL, Shen HS (2008) Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation. J Phys D Appl Phys 41:055404

    Google Scholar 

  46. Allen MP, Tildesley DJ (1986) Computer simulation of liquids. Oxford university press New York.

    Google Scholar 

  47. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    CAS  Google Scholar 

  48. Thompson MA (2004) Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function. ACS meeting, Philadelphia, 172, CINF 42, PA

    Google Scholar 

  49. Hao X, Qiang H, Xiaohu Y (2008) Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol 68:1809

    CAS  Google Scholar 

  50. Mylvaganam K, Zhang LC (2004) Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 42(10):2025

    CAS  Google Scholar 

  51. Ajori S, Ansari R, Parsapour H (2016) Buckling analysis of defective cross-linked functionalized single-and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations. J Mol Model 22(12):298

    CAS  PubMed  Google Scholar 

  52. Ajori S, Ansari R, Haghighi S (2018) A molecular dynamics study on the buckling behavior of cross-linked functionalized carbon nanotubes under physical adsorption of polymer chains. Appl Surf Sci 427:704–714

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahram Ajori or R. Ansari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, A., Ajori, S. & Ansari, R. On the buckling behavior of functionalized single- and double-walled carbon nanotubes with azobenzene in the aqueous environment: a molecular dynamics study. Struct Chem 31, 371–384 (2020). https://doi.org/10.1007/s11224-019-01418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01418-6

Keywords

Navigation