Skip to main content
Log in

Internal rotation and intramolecular hydrogen bonding in thiosalicylamide: gas phase electron diffraction study supported by quantum chemical calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The molecular structure of thiosalicylamide (2-hydroxythiobenzamide) was investigated in the gas phase at 401 K by means of gas electron diffraction (GED) combined with quantum chemical (QC) calculations. Special attention was paid to the internal rotation of the thioamide group. Structural refinement was performed taking into account rovibrational corrections to the thermal-average internuclear distances calculated with harmonic and anharmonic (cubic) MP2/cc-pVTZ force constants in terms of static and dynamic models. It was shown that both models fitted the GED data equally well. The results of the GED refinement revealed that in the equilibrium structure, the thioamide group is twisted by about 30° with respect to the phenol ring plane. This is the result of an interatomic repulsion of hydrogen atom in the amide group from the closest hydrogen atom of the benzene ring, which overcomes the energy gain from the π−π conjugation of the thioamide group and the aromatic system of thiosalicylamide. Natural bond orbital (NBO) analysis and comparison of the thiosalicylamide molecular structure with those of related compounds revealed hydrogen-bonded fragment between the hydroxyl and thiocarbonyl groups. The structure of thiosalicylamide in the gas phase was found to be markedly different from that in the solid phase due to the effect of intermolecular hydrogen bonding in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pospisilova S, Michnova H, Kauerova T, Pauk K, Kollar P, Vinsova J, Imramovsky A, Cizek A, Jampilek J (2018). Bioorg Med Chem Lett 28(12):2184–2188. https://doi.org/10.1016/j.bmcl.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  2. Ueda J, Khan ST, Takagi M, Shin-ya K (2010). J Antibiot 63(5):267–269. https://doi.org/10.1038/ja.2010.26

    Article  CAS  PubMed  Google Scholar 

  3. Hardie DG (2013). Diabetes 62(7):2164–2172. https://doi.org/10.2337/db13-0368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mehanna AS, Kim JY (2005). Bioorg Med Chem 13(13):4323–4331. https://doi.org/10.1016/j.bmc.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Mantravadi PK, Jobbagy S, Bao W, Koh JT (2016). ACS Chem Biol 11(10):2797–2802. https://doi.org/10.1021/acschembio.6b00659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palomar J, De Paz JLG, Catalán J (1999). Chem Phys 246(1–3):167–208. https://doi.org/10.1016/s0301-0104(99)00159-7

    Article  CAS  Google Scholar 

  7. Pertlik F (1990). Monatsh Chem 121:129–139. https://doi.org/10.1007/BF00809525

    Article  CAS  Google Scholar 

  8. Velcheva EA, Stamboliyska BA (2008). J Mol Struct 875(1–3):264–271. https://doi.org/10.1016/j.molstruc.2007.04.038

    Article  CAS  Google Scholar 

  9. Anandan K, Kolandaivel P, Kumaresan R (2005). Int J Quantum Chem 104(3):286–298. https://doi.org/10.1002/qua.20559

    Article  CAS  Google Scholar 

  10. Manin AN, Voronin AP, Perlovich GL (2013). Thermochim Acta 551:57–61. https://doi.org/10.1016/j.tca.2012.10.013

    Article  CAS  Google Scholar 

  11. Aarset K, Page EM, Rice DA (2013). J Phys Chem A 117(14):3034–3040. https://doi.org/10.1021/jp311003d

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee K, Raychaudhury S (1982). Bull Chem Soc Jpn 55(11):3621–3624. https://doi.org/10.1246/bcsj.55.3621

    Article  CAS  Google Scholar 

  13. Sambathkumar K (2015). Spectrochim Acta A 147:51–66. https://doi.org/10.1016/j.saa.2015.03.052

    Article  CAS  Google Scholar 

  14. Jezierska A, Panek JJ, Mazzarello R (2009). Theor Chem Accounts 124(5–6):319–330. https://doi.org/10.1007/s00214-009-0612-2

    Article  CAS  Google Scholar 

  15. Briel D (2005). Heterocycles 65(6):1295–1309

    Article  CAS  Google Scholar 

  16. Kochikov IV, Kovtun DM, Tarasov YI (2008). Num Meth Program 9:12–18 http://num-meth.srcc.msu.ru/zhurnal/tom_2008/pdf/v9r202.pdf. Accessed 13.09.2010

  17. Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann JR, Burant JC, DapprichS, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komazomi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM, Johnson B, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 (Revision D01). Gaussian Inc., Pittsburgh

  18. Becke AD (1988). Phys Rev A 38(6):3098–3000. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. Møller C, Plesset MS (1934). Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  21. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988). J Chem Phys 89:2193–2218. https://doi.org/10.1063/1.455064

    Article  CAS  Google Scholar 

  22. Dunning TH (1989). J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  23. Weinhold F, Landis CR (2001). Chem Educ Res Pract 2:91–104. https://doi.org/10.1039/B1RP90011K

    Article  CAS  Google Scholar 

  24. G. A. Zhurko, D. A. Zhurko, ChemCraft 1.6 build vol. 332 https://www.chemcraftprog.com/index.html. Accessed 20.06.2010

  25. Vishnevskiy YV, UNEX, 2007, version 1.5. http://unexprog.org. Accessed 2.09.2013

  26. Ischenko AA, Girichev GV, Tarasov YI (2013) Electron diffraction: structure and dynamics of free molecules and condensed state of substance. Fizmatlit, Moscow

    Google Scholar 

  27. Sipachev VA (2000). Struct Chem 11:167–172. https://doi.org/10.1023/A:1009217826943

    Article  CAS  Google Scholar 

  28. Vishnevskiy YV, Zhabanov YA (2015). J Phys Conf Ser 633:012076. https://doi.org/10.1088/1742-6596/633/1/012076

    Article  CAS  Google Scholar 

  29. Tikhonov DS, Vishnevskiy YV, Rykov AN, Grikina OE, Khaikin LS (2017). J Mol Struct 1132:20–27. https://doi.org/10.1016/j.molstruc.2016.05.090

    Article  CAS  Google Scholar 

  30. Kolesnikova IN, Putkov AE, Rykov AN, Shishkov IF (2018). J Mol Struct 1161:76–82. https://doi.org/10.1016/j.molstruc.2018.01.084

    Article  CAS  Google Scholar 

  31. Portalone G, Schultz G, Domenicano A, Hargittai I (1992). Chem Phys Lett 197:482–488. https://doi.org/10.1016/0009-2614(92)85804-J

    Article  CAS  Google Scholar 

  32. Pauling L (1960) The nature of the chemical bond3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  33. Wiberg KB (1968). Tetrahedron 24:1083–1196. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Ilya I. Marochkin from Lomonosov Moscow State University, Arseniy A. Otlyotov, Dr. Yury A. Zabanov, and Prof. Nina I. Giricheva from Ivanovo State University of Chemistry and Technology for valuable consultations which were very useful for preparing this manuscript.

Funding

This project was made with financial support of the Russian Foundation for Basic Research (Grant Number 18-33-00546 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna N. Kolesnikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikova, I.N., Rykov, A.N., Shuvalov, M.V. et al. Internal rotation and intramolecular hydrogen bonding in thiosalicylamide: gas phase electron diffraction study supported by quantum chemical calculations. Struct Chem 30, 1993–2001 (2019). https://doi.org/10.1007/s11224-019-01369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01369-y

Keywords

Navigation