Skip to main content
Log in

Structure and thermal behavior of two bimetallic carboxylates: Cs[M(CCl3COO)3(H2O)3], M = Co, Ni

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Bimetallic trichloroacetates of the composition Cs[M(CCl3COO)3(H2O)3], where (I: M = Co, II: Ni) were synthesized. The structures of these compounds have been determined by the single crystal X-ray diffraction. The compounds are isostructural and crystallize in the trigonal system, sp.gr. \( R\overline{3} \). а = b = 10.5770(6), c = 32.8213(2) Å, α = β = 90°, γ = 120°, Z = 6, V = 3179.9(4) Å3 (for Со compound), а = b = 10.5404(4), c = 32.7116(7) Å, α = β = 90°, γ = 120°, Z = 6, V = 3147.4(2) Å3 (for Ni compound). The structure contains [M(CCl3COO)3(H2O)3] anions, where (M = Co, Ni). The d-metal atom is located in the distorted octahedral environment of oxygen atoms in the anion. These compounds have nearly the same IR spectra. The thermal stability of the compounds was studied. The thermal behavior of these compounds is similar to each other, but the difference is in the stage of loss of crystallization water—for the nickel compound, this process starts at 20 °C higher than for the cobalt compound. The high-temperature process of the transition of metal chlorides to the gas phase differs: for the cobalt compound, the mass loss begins at 600 °C, whereas for the nickel compound, the mass loss begins at 720 °C. The compounds obtained are the first examples of alkaline metal—transition metal trichloroacetates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ward AJ, Masters AF, Maschmeyer T (2013) Cobalt(II) carboxylate chemistry and Molecular Magnetism. In: Reedijk J, Poeppelmeier KR, Yam VWW (eds) Comprehensive Inorganic Chemistry II, vol 8. University of Sydney, Elsevier, Sydney, NSW, Australia, pp 191–228

  2. Ahmada N, Chughtaia AH, Younusa HA, Verpoort F (2014) Discrete metal-carboxylate self-assembled cages: design, synthesis and applications. Coord Chem Rev 280:1–27

    Article  CAS  Google Scholar 

  3. Schneller T, Waser R, Kosec M, Payne D (2013) Chemical solution deposition of functional oxide thin films. Springer-Verlag, Wien

    Book  Google Scholar 

  4. Wojciechowski W, Legendziewicz J, Puchalska M, Ciunik Z (2004) Comparative magnetic studies of (Sm, Nd) trichloroacetates and their heteronuclear CuLn2(CCl3COO)8·6H2O systems: structure and spectroscopy of a new type of Eu trichloroacetate. J Alloys Compounds 380:285–295

    Article  CAS  Google Scholar 

  5. Mereacre V, Prodius D, Turta C, Shova S, Filoti G, Bartolomé J, Clérac R, Anson CE, Powell A (2009) The synthesis, structural characterization, magnetochemistry and Mössbauer spectroscopy of [Fe3LnO2(CCl3COO)8H2O(THF)3] (Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Lu and Y). Polyhedron 28:3017–3025

    Article  CAS  Google Scholar 

  6. Prodius D, Turta C, Mereacre V, Shova S, Gdaniec M, Simonov Y, Lipkowski J, Kuncser V, Filoti G, Caneschi A (2006) Synthesis, structure and properties of heterotrinuclear carboxylate complexes [Fe2M(Ca, Sr, Ba)O(CCl3COO)6(THF)n]. Polyhedron 25:2175–2182

    Article  CAS  Google Scholar 

  7. Prodius D, Macaev F, Mereacre V, Shova S, Lutsenco Y, Styngach E, Ruiz R, Muraviev D, Lipkowski J, Simonov Y, Turta C (2009) Synthesis and characterization of {Fe2CuO} clusters as precursors for nanosized catalytic system for Biginelli reaction. Inorg Chem Commun 12:642–645

    Article  CAS  Google Scholar 

  8. Cui Y, Chen J-T, Huang J-S (1999) Syntheses, crystal structures and magnetic properties of heterometallic copper–lanthanide clusters [Cu12Ln63-OH)24(μ-O2CR)12(H2O)1812-ClO4)]5+(Ln=La, Nd; R=CH2Cl, CCl3). Inorg Chim Acta 293:129–139

    Article  CAS  Google Scholar 

  9. Kaminski D, Webber AL, Wedge CJ, Liu J, Timco GA, Vitorica-Yrezabal IJ, McInnes EJL, Winpenny REP, Ardavan A (2014) Quantum spin coherence in halogen-modified Cr7Ni molecular nanomagnets. Phys Rev B90:184419(1)–184419(4)

    Google Scholar 

  10. Ng SW (2004) Aquabis(tetrahydrofuran)hexakis(trichloroacetato)copper(II)diiron(III) hexane solvate. Acta Cryst E60:m738–m740

    Google Scholar 

  11. Turta C, Prodius D, Mereacre V, Shova S, Gdaniec M, Simonov Y, Kuncser V, Filoti G, Caneschi A, Sorace L (2004) The first specimen of tetranuclear (FeIII, LnIII) clusters assembled by carboxylate ligands: synthesis, structure, Mössbauer spectra, and magnetic properties of [Fe3EuO2(CCl3COO)8H2O(THF)3] THF. Inorg Chem Commun 7:576–579

    Article  CAS  Google Scholar 

  12. Turta C, Shova S, Prodius D, Mereacre V, Gdaniec M, Simonov Y, Lipkowski J (2004) Novel heteronuclear (Fe2 IIIMg)μ3-oxo-bridged trichloroacetates: synthesis and X-ray study of [Fe2 IIIMgIIO(CCl3COO)6(Py)3] CH3C6H5 and [Fe2 IIIMgIIO(CCl3COO)6(THF)3]. Inorg Chim Acta 357:4396–4404

    Article  CAS  Google Scholar 

  13. Lutsenko IA, Kiskin MA, Efimov NN, Ugolkova EA, Maksimov YV, Imshennik VK, Goloveshkin AS, Khoroshilov AV, Lytvynenko AS, Sidorov AA, Eremenko IL (2017) New heterometallic pivalates with FeIII and ZnII ions: synthesis, structures, magnetic, thermal properties. Polyhedron 137:165–175

    Article  CAS  Google Scholar 

  14. Prodius D, Mereacre V, Singh P, Lan Y, Mameri S, Johnson DD, Wernsdorfer W, Anson CE, Powell AK (2018) Influence of lanthanides on spin-relaxation and spin-structure in a family of Fe7Ln4 single molecule magnets. J Mater Chem 6:2862–2875

    CAS  Google Scholar 

  15. Abdulwahab KO, Malik MA, O’Brien P, Vitorica-Yrezabal IJ, Timco GA, Tuna F, Winpenny REP (2018) The synthesis of a monodisperse quaternary ferrite (FeCoCrO4) from the hot injection thermolysis of the single source precursor [CrCoFeO(O2CtBu)6(HO2CtBu)3]. Dalton Trans 47:376–381

    Article  CAS  PubMed  Google Scholar 

  16. Lu D-F, Hong Z-F, Xie J, Kong X-J, Long L-S, Zheng L-S (2017) High-nuclearity lanthanide−titanium oxo clusters as luminescent molecular thermometers with high quantum yields. Inorg Chem 56:12186–12192

    Article  CAS  PubMed  Google Scholar 

  17. Radu I, Kravtsov VC, Ostrovsky SM, Reu OS, Krämer K, Decurtins S, Liu S-X, Klokishner SI, Baca SG (2017) Tetranuclear {CoII 2CoIII 2}, Octanuclear {CoII 4CoIII 4}, and hexanuclear {CoIII 3DyIII 3} pivalate clusters: synthesis, magnetic characterization and theoretical modeling. Inorg Chem 56:2662–2676

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee D, Parise JB (2011) Recent advances in s-block metal carboxylate networks. Cryst Growth Des 11:4704–4720

    Article  CAS  Google Scholar 

  19. Chung YH, Wei HH, Liu YH, Lee GH, Yu W (1998) Reinvestigation of the crystal structure and cryomagnetic behaviour of copper(II) propionates. Polyhedron 17:449–455

    Article  CAS  Google Scholar 

  20. Kepert DL, Skelton BW, White AH (1980) Crystal structure of the acetic acid solvate of the molybdenum(II) acetate/sodium acetate double salt. Aust J Chem 33:1847–1852

    Article  CAS  Google Scholar 

  21. Sabirov VH, Porai-Koshits MA, Struchkov YT (1994) Synthesis and crystal structure of K4[Cu(CH3COO)4](CH3COO)2 ⋅2CH3COOH⋅2H2O. Russ J Coord Chem 20:691–696

    CAS  Google Scholar 

  22. Siegrist T, Chamberland BL, Ramirez AP et al (1996) NaH[Cu2(O2C2H3)6]: a new compound containing copper-to-copper bonding. J Solid State Chem 121:61–65

    Article  CAS  Google Scholar 

  23. Klop EA, Duisenberg AJM, Spek AL (1983) Reinvestigation of the structure of calcium copper acetate hexahydrate CaCu(C2H3O2)4∙6H2O. Acta Crystallogr Sect C 39:1342–1344

    Article  Google Scholar 

  24. X-Area Vers 1.67 (2013) Stoe & Cie; Darmstadt Germany

  25. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  26. Sheldrick GM (2015) SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr Sect A 71:3–8

    Article  CAS  Google Scholar 

  27. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8

    Article  CAS  Google Scholar 

  28. DIAMOND – Crystal and Molecular Structure Visualization Crystal Impact – K. Brandenburg & H. Putz GbR, Postfach 1251, D-53002 Bonn

  29. Chessin H, Hamilton WC, Post B (1965) Position and thermal parameters of oxygen atoms in calcite. Acta Crystallogr 18:689–693

    Article  CAS  Google Scholar 

  30. Pilati T, Demartin F, Gramaccioli CM (1998) Lattice-dynamical estimation of atomic displacement parameters in carbonates: calcite and aragonite CaCO3 dolomite CaMg(CO3)2 and Magnesite MgCO3. Acta Crystallogr Sect B 54:515–523

    Article  Google Scholar 

  31. Spinner E (1964) The vibration spectra of some substituted acetate ions. J Chem Soc 4217–4226

  32. Warrier AVR, Krishnan RS (1970) Infrared spectra of trichloroacetates of copper, calcium, strontium and barium. Spectrochim Acta Part A 27:1243–1246

    Article  Google Scholar 

  33. Socrates G (2001) Infrared and raman characteristic group frequencies: tables and charts3rd edn. JOHN WILEY & SONS, LTD, Chichester

    Google Scholar 

  34. Judd MD, Plunkett BA, Pope MI (1976) The structures and thermal decomposition of cupric mono-, di- and trichloroacetates. J Therm Anal 9:83–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by M.V. Lomonosov Moscow State University program of development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karpova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, E.V., Zakharov, M.A. & Medovik, M.G. Structure and thermal behavior of two bimetallic carboxylates: Cs[M(CCl3COO)3(H2O)3], M = Co, Ni. Struct Chem 30, 435–442 (2019). https://doi.org/10.1007/s11224-018-1258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1258-2

Keywords

Navigation