Skip to main content

Advertisement

Log in

DFT study of SiO2 nanoparticles as a drug delivery system: structural and mechanistic aspects

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Adsorption and reaction mechanisms for the noncovalent and covalent functionalization of SiO2 nanoparticle (SiNP) with gemcitabine (GEM) anticancer drug have been investigated, respectively. Electronic and structural properties have been studied in an aqueous environment at M06-2X/6-31g(d,p). The energetic stability of five noncovalent configurations (SiNP/GEM1–5) was confirmed by the calculation of binding energies. Since the solubility of the drug and SiNP increases in SiNP/GEM1-5, the SiO2 nanoparticle could be used as an appropriate drug delivery system. Quantum molecular descriptors indicated that the reactivity of SiNP increases in SiNP/GEM1–5. The AIM analysis for noncovalent configurations demonstrated that the intermolecular hydrogen bonds play important roles in this system. The possibility of chemical bond formation between SiNP and GEM has been investigated through NH2 (NH2 mechanism), CH2OH (CH2OH mechanism), and OH (OH mechanism) groups. The calculation of the activation parameters showed that the hydroxymethyl pathway is spontaneous and exothermic and has a lower activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 44(1):381–391

    CAS  PubMed  Google Scholar 

  2. Kalomiraki M, Thermos K, Chaniotakis NA (2016) Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine 11:1–12

    CAS  PubMed  Google Scholar 

  3. Barra PA, Barraza LF, Jiménez VA, Gavin JA, Alderete JB (2014) Drug-dendrimer supramolecular complexation studied from molecular dynamics simulations and NMR spectroscopy. Struct Chem 25(5):1443–1455

    CAS  Google Scholar 

  4. Vogus DR, Krishnan V, Mitragotri S (2017) A review on engineering polymer drug conjugates to improve combination chemotherapy. Curr Opin Colloid Interface Sci 31:75–85

    CAS  Google Scholar 

  5. Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33(6):1162–1176

    CAS  PubMed  Google Scholar 

  6. Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ (2016) Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 7(1):8–28

    PubMed  PubMed Central  Google Scholar 

  7. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5):595–601

    CAS  PubMed  Google Scholar 

  8. Kwon S, Singh RK, Perez RA, Neel EAA, Kim HW, Chrzanowski W (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4(1):1–18. https://doi.org/10.1177/2041731413503357

    Article  CAS  Google Scholar 

  9. Singh RK, Kim HW (2013) Inorganic nanobiomaterial drug carriers for medicine. Tissue Eng Regen Med 10(6):296–309. https://doi.org/10.1007/s13770-013-1092-y

    Article  CAS  Google Scholar 

  10. Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357. https://doi.org/10.1016/j.jconrel.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  11. Magham AHJ, Morsali A, Beyramabadi S, Chegini H (2015) Density functional theoretical study on the mechanism of adsorption of 2-chlorophenol from water using [gamma]-Fe2O3 nanoparticles. Prog React Kinet Mech 40(2):119–127

    CAS  Google Scholar 

  12. Vessally E, Esrafili MD, Nurazar R, Nematollahi P, Bekhradnia A (2017) A DFT study on electronic and optical properties of aspirin-functionalized B 12 N 12 fullerene-like nanocluster. Struct Chem 28(3):735–748

    CAS  Google Scholar 

  13. Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    CAS  Google Scholar 

  14. Teymoori M, Morsali A, Bozorgmehr MR, Beyramabadi SA (2017) Quantum mechanical study on the mechanistic, energetic, and structural properties of adsorption of 6-thioguanine onto γ-Fe2O3 nanoparticles. Bull Kor Chem Soc 38(8):869–874

    CAS  Google Scholar 

  15. Pushkarchuk A, Potkin V, Kilin S, Nizovtsev A, Soldatov A, Kuten S, Pushkarchuk V (2016) Structure and magnetic properties of Saturn-shaped fullerenol complexes with ferrocene and nickelocene dicarboxylic acids: DFT simulation. Struct Chem 27(1):281–284

    CAS  Google Scholar 

  16. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61(3):1027–1040

    CAS  Google Scholar 

  17. Liu J, Gao F, Cheng Q, Lu B, Zheng H, Xu H, Xu P, Zhang X-Z, Zeng X (2018) Dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. J Mater Chem B 6(28):4618–4629

    Google Scholar 

  18. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    CAS  PubMed  Google Scholar 

  19. Lee CH, Lo LW, Mou CY, Yang CS (2008) Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug. Adv Funct Mater 18(20):3283–3292

    CAS  Google Scholar 

  20. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    CAS  PubMed  Google Scholar 

  21. Kao T, Kohle F, Ma K, Aubert T, Andrievsky A, Wiesner U (2018) Fluorescent silica nanoparticles with well-separated intensity distributions from batch reactions. Nano Lett 18(2):1305–1310

    CAS  PubMed  Google Scholar 

  22. Pascual L, Baroja I, Aznar E, Sancenón F, Marcos MD, Murguía JR, Amorós P, Rurack K, Martínez-Máñez R (2015) Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chem Commun 51(8):1414–1416

    CAS  Google Scholar 

  23. Fonseca LC, de Araújo MM, de Moraes ACM, da Silva DS, Ferreira AG, Franqui LS, Martinez DST, Alves OL (2018) Nanocomposites based on graphene oxide and mesoporous silica nanoparticles: preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins. Appl Surf Sci 437:110–121

    CAS  Google Scholar 

  24. Davydenko M, Radchenko E, Yashchuk V, Dmitruk I, Prylutskyy YI, Matishevska O, Golub A (2006) Sensibilization of fullerene C60 immobilized at silica nanoparticles for cancer photodynamic therapy. J Mol Liq 127(1–3):145–147

    CAS  Google Scholar 

  25. Janicke M, Landry C, Christiansen S, Birtalan S, Stucky G, Chmelka B (1999) Low silica MCM-41 composites and mesoporous solids. Chem Mater 11(5):1342–1351

    CAS  Google Scholar 

  26. Delle Piane M, Corno M, Pedone A, Dovesi R, Ugliengo P (2014) Large-scale B3LYP simulations of ibuprofen adsorbed in MCM-41 mesoporous silica as drug delivery system. J Phys Chem C 118(46):26737–26749

    Google Scholar 

  27. Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VS-Y (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    CAS  PubMed  Google Scholar 

  28. Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    CAS  Google Scholar 

  29. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6(18):1952–1967

    CAS  PubMed  Google Scholar 

  30. Li Y, Li N, Pan W, Yu Z, Yang L, Tang B (2017) Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces 9(3):2123–2129

    CAS  PubMed  Google Scholar 

  31. Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8(13):7240–7247

    CAS  PubMed  Google Scholar 

  32. Rafi AA, Mahkam M, Davaran S, Hamishehkar H (2016) A smart pH-responsive Nano-carrier as a drug delivery system: a hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): preparation, characterization and in vitro release studies of an anti-cancer drug. Eur J Pharm Sci 93:64–73

    Google Scholar 

  33. Boccardi E, Liverani L, Beltrán A, Günther R, Schmidt J, Peukert W, Boccaccini A (2018) Mesoporous silica submicron particles (MCM-41) incorporating nanoscale Ag: synthesis, characterization and application as drug delivery coatings. J Porous Mater:1–11

  34. Mathew A, Parambadath S, Park SS, Ha C-S (2014) Hydrophobically modified spherical MCM-41 as nanovalve system for controlled drug delivery. Microporous Mesoporous Mater 200:124–131

    CAS  Google Scholar 

  35. Lewandowski D, Bajerlein D, Schroeder G (2014) Adsorption of hydrogen peroxide on functionalized mesoporous silica surfaces. Struct Chem 25(5):1505–1512

    CAS  Google Scholar 

  36. Balas F, Manzano M, Horcajada P, Vallet-Regí M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128(25):8116–8117

    CAS  PubMed  Google Scholar 

  37. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558

    Google Scholar 

  38. Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang CH, Nel AE (2015) Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9(4):3540–3557

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Karimzadeh M, Rashidi L, Ganji F (2017) Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 43(4):628–636

    CAS  PubMed  Google Scholar 

  40. Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    CAS  PubMed  Google Scholar 

  41. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5(23):2673–2677

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rejeeth C, Nag TC, Kannan S (2013) Cisplatin-functionalized silica nanoparticles for cancer chemotherapy. Cancer Nanotechnol 4(6):127–136

    PubMed  PubMed Central  Google Scholar 

  43. Ebadi A, Rafati AA (2015) Preparation of silica mesoporous nanoparticles functionalized with β-cyclodextrin and its application for methylene blue removal. J Mol Liq 209:239–245

    CAS  Google Scholar 

  44. Hu Y, Zhi Z, Zhao Q, Wu C, Zhao P, Jiang H, Jiang T, Wang S (2012) 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater 147(1):94–101

    Google Scholar 

  45. Kamel M, Raissi H, Morsali A, Shahabi M (2018) Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD. Appl Surf Sci 434:492–503

    CAS  Google Scholar 

  46. Farmanzadeh D, Ghazanfary S (2014) DFT studies of functionalized zigzag and armchair boron nitride nanotubes as nanovectors for drug delivery of collagen amino acids. Struct Chem 25(1):293–300

    CAS  Google Scholar 

  47. Kamel M, Raissi H, Morsali A (2017) Theoretical study of solvent and co-solvent effects on the interaction of Flutamide anticancer drug with carbon nanotube as a drug delivery system. J Mol Liq 248:490–500

    CAS  Google Scholar 

  48. Chegini H, Morsali A, Bozorgmehr M, Beyramabadi S (2016) Theoretical study on the mechanism of covalent bonding of dapsone onto functionalised carbon nanotubes: effects of coupling agent. Prog React Kinet Mech 41(4):345–355

    CAS  Google Scholar 

  49. Saikia N, Deka RC (2014) Adsorption of isoniazid and pyrazinamide drug molecules onto nitrogen-doped single-wall carbon nanotubes: an ab initio study. Struct Chem 25(2):593–605

    CAS  Google Scholar 

  50. Mutch DG, Orlando M, Goss T, Teneriello MG, Gordon AN, McMeekin SD, Wang Y, Scribner Jr DR, Marciniack M, Naumann RW (2007) Randomized phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer. J Clin Oncol 25(19):2811–2818

    CAS  PubMed  Google Scholar 

  51. Langer CJ (2000) The role of new agents in advanced non—small–cell lung carcinoma. Curr Oncol Rep 2(1):76–89

    CAS  PubMed  Google Scholar 

  52. Hui YF, Reitz J (1997) Gemcitabine: a cytidine analogue active against solid tumors. Am J Health Syst Pharm 54(2):162–170

    CAS  PubMed  Google Scholar 

  53. O'shaughnessy J, Schwartzberg L, Danso M, Rugo H, Miller K, Yardley D, Carlson R, Finn R, Charpentier E, Freese M (2011) A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J Clin Oncol 29(15_suppl):1007–1007

    Google Scholar 

  54. Paz-Ares L, Solsona E, Esteban E, Saez A, Gonzalez-Larriba J, Anton A, Hevia M, de la Rosa F, Guillem V, Bellmunt J (2010) Randomized phase III trial comparing adjuvant paclitaxel/gemcitabine/cisplatin (PGC) to observation in patients with resected invasive bladder cancer: results of the Spanish Oncology Genitourinary Group (SOGUG) 99/01 study. J Clin Oncol 28(18_suppl):LBA4518–LBA4518

    Google Scholar 

  55. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382

    PubMed  Google Scholar 

  56. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101

    PubMed  Google Scholar 

  57. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) G09 Gaussian Inc. Gaussian 09, revision B01 Gaussian, Inc, Wallingford, CT

  58. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16(12):1449–1458

    CAS  Google Scholar 

  59. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94(7):2027–2094

    CAS  Google Scholar 

  60. Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    CAS  Google Scholar 

  61. Keith TA (2013) AIMAll (Version 13.05. 06). TK Gristmill Software, Overland Park

    Google Scholar 

  62. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    CAS  Google Scholar 

  63. Chashchikhin V, Rykova E, Bagaturyants A (2011) Density functional theory modeling of the adsorption of small analyte and indicator dye 9-(diphenylamino) acridine molecules on the surface of amorphous silica nanoparticles. PCCP 13(4):1440–1447

    CAS  PubMed  Google Scholar 

  64. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1):215–241

    CAS  Google Scholar 

  65. Musso F, Casassa S, Corno M, Ugliengo P (2017) How strong are H-bonds at the fully hydroxylated silica surfaces? Insights from the B3LYP electron density topological analysis. Struct Chem 28(4):1009–1015

    CAS  Google Scholar 

  66. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161

    CAS  Google Scholar 

  67. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr Sect B: Struct Sci 55(4):563–572

    CAS  Google Scholar 

  68. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems. J Chem Phys 117(12):5529–5542

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Research Center for Animal Development Applied Biology for allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Morsali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Morsali, A. & Bozorgmehr, M.R. DFT study of SiO2 nanoparticles as a drug delivery system: structural and mechanistic aspects. Struct Chem 30, 715–726 (2019). https://doi.org/10.1007/s11224-018-1227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1227-9

Keywords

Navigation