Skip to main content
Log in

Adamantyl-substituted ligands of colchicine binding site in tubulin: different effects on microtubule network in cancer cells

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Four novel conjugates of adamantane connected at a bridgehead position via four-bond linker to structurally different ligands interacting with colchicine binding site of tubulin were synthesized. All compounds were found to inhibit cancer cell proliferation and, notably, to promote the formation of different atypical tubulin assemblies — clusters, curly, or “entangled” microtubules. The distinction in the observed effects for conceptually equivalent structural templates can be partially explained on the basis of computer molecular modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hadfield JA, Ducki S, Hirst N, McGown AT (2003) Tubulin and microtubules as targets for anticancer drugs. Prog Cell Cycle Res 5:309–325

    PubMed  Google Scholar 

  2. Risinger AL, Giles FJ, Mooberry SL (2009) Microtubule dynamics as a target in oncology. Cancer Treat Rev 35:255–261

    Article  CAS  Google Scholar 

  3. Karecla P, Hirst E, Bayley P (1989) Polymorphism of tubulin assembly in vitro. J Cell Sci 94:479–488

    CAS  Google Scholar 

  4. Yvon AM, Wadsworth P, Jordan MA (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 10:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupta S, Bhattacharyya B (2003) Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem 253:41–47

    Article  CAS  PubMed  Google Scholar 

  6. Perez EA (2009) Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8:2086–2095

    Article  CAS  PubMed  Google Scholar 

  7. Saltarelli D, Pantaloni D (1982) Polymerization of the tubulin-colchicine complex and guanosine 5′-triphosphate hydrolysis. Biochemistry 21:2996–3006

    Article  CAS  PubMed  Google Scholar 

  8. Zefirova ON, Lemcke H, Lantow M, Nurieva EV, Wobith B, Onishchenko GE, Hoenen A, Griffiths G, Zefirov NS, Kuznetsov SA (2013) Unusual tubulin-clustering ability of definitely C7-modified colchicine analogues. ChemBioChem 14:1444–1449

    Article  CAS  PubMed  Google Scholar 

  9. Zefirov NA, Hoppe M, Kuznetsova IV, Chernyshov NА, Grishin YK, Maloshitskaya OA, Kuznetsov SA, Zefirova ON (2018) Homologues series of novel adamantane – colchicine conjugates: synthesis and cytotoxic effect on human cancer cells. Mendeleev Commun 28:225–344

    Article  CAS  Google Scholar 

  10. Thomopoulou P, Sachs J, Teusch N, Mariappan A, Gopalakrishnan J, Schmalz HG (2015) New colchicine-derived triazoles and their influence on cytotoxicity and microtubule morphology. ACS Med Chem Lett 7:188–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vilanova C, Díaz-Oltra S, Murga J, Falomir E, Carda M, Redondo-Horcajo JM, Díaz JF, Barasoain I, Marco A (2014) Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J Med Chem 57:10391–10403

    Article  CAS  PubMed  Google Scholar 

  12. Zefirova ON, Nurieva EV, Wobith B, Gogol VV, Zefirov NA, Ogonkov AV, Shishov DV, Zefirov NS, Kuznetsov SA (2017) Novel antimitotic agents related to tubuloclustin: synthesis and biological evaluation. Mol Divers 21:547–564

    Article  CAS  PubMed  Google Scholar 

  13. Nurieva EV, Zefirov NA, Mamaeva AV, Wobith B, Kuznetsov SA, Zefirova ON (2018) Synthesis of steroid analogs of tubuloclustin, their cytotoxicity and effect on microtubules of A549 carcinoma cells. Russ Chem Bull 67:688–693

    Article  CAS  Google Scholar 

  14. Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wirf P, Hamel E, Gussio R (2005) A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem 48:6107–6116

    Article  CAS  Google Scholar 

  15. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  16. Al-Haddad A, Shonn MA, Redlich B, Blocker A, Burkhardt JK, Yu H, Hammer 3rd JA, Weiss DG, Steffen W, Griffiths G, Kuznetsov SA (2001) Myosin Va bound to phagosomes binds to F-actin and delays microtubule-dependent motility. Mol Biol Cell 12:2742–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock 4 and AutoDockTools 4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bagnato JD, Eilers AL, Horton RA, Grissom CB (2004) Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J Org Chem 69:8987–8996

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Russian Fund of Fundamental Research (project no. №18-03-00524) and the German organization DAAD (German Academic Exchange Service) under the auspices of a collaborative agreement between Moscow and Rostock Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai A. Zefirov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zefirov, N.A., Evteeva, Y.A., Wobith, B. et al. Adamantyl-substituted ligands of colchicine binding site in tubulin: different effects on microtubule network in cancer cells. Struct Chem 30, 465–471 (2019). https://doi.org/10.1007/s11224-018-1219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1219-9

Keywords

Navigation