Skip to main content
Log in

Ammonium cyamelurates: synthesis and crystalline structures

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Contradictory literature on the alkali-assisted exfoliation of the melon and searching for the best precursors for different heptazine derivative synthesis led us to the synthesis of two cyameluric acid salts, (NH4)2[C6N7O3H] (ECN3) and (NH4)2(H9O4)[C6N7O3] (ECN5). These salts were characterized by single-crystal X-ray diffractometry for the first time. Ammonium cations bind C6N7O3H2− anions (ECN3) by means of Coulombic compression and hydrogen bonds. In ECN5, stability of the columns consisting of C6N7O33− anion triads is provided by Coulombic compression and hydrogen bonds between anions, ammonium cations, and hydroxonium (H9O4+). The planar cyamelurate anions of one triad are located strictly above each other with the distance of 3.710(3) Å between the neighbor anions. Each triad is twisted relative to the adjacent one by an angle of 60° and is distant by 3.605(3) Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen DH (2017) SCRustainable water technologies. Boca Raton: Taylor & Francis, CRC Press

  2. Yin S, Han J, Zhou T, Xu R (2015) Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal Sci Technol 5:5048–5061

    Article  CAS  Google Scholar 

  3. Deng Y, Tang L, Zeng G, Zhu Z, Yan M, Zhou Y, Wang J, Liu Y, Wang J (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl Catal B Environ 203:343–354

    Article  CAS  Google Scholar 

  4. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  5. Biswas T, Mahalingam V (2017) g-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions. New J Chem 41:14839–14842

    Article  CAS  Google Scholar 

  6. Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F (2015) Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J Membr Sci 490:72–83

    Article  CAS  Google Scholar 

  7. Wang A, Wang C, Fu L, Wong-Ng W, Lan Y (2017) Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett 9:47

    Article  CAS  Google Scholar 

  8. Tian J, Liu Q, Asiri AM, Suna X, He Y (2015) Ultrathin graphitic C3N4 nanofibers: hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sensors Actuators B 216:453–460

    Article  CAS  Google Scholar 

  9. Kessler FK, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X, Bojdys MJ (2017) Functional carbon nitride materials – design strategies for electrochemical devices. Nat Rev Mater 2:17030

    Article  CAS  Google Scholar 

  10. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  11. Liang Q, Li Z, Huang Z-H, Kang F, Yang Q-H (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25:6885–6892

    Article  CAS  Google Scholar 

  12. Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

    Article  CAS  PubMed  Google Scholar 

  13. Shi L, Wang F, Liang L, Chen K, Liu M, Zhu R, Sun J (2017) In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catal Commun 89:129–132

    Article  CAS  Google Scholar 

  14. Liu G, Wang T, Zhang H, Meng X, Hao D, Chang K, Li P, Kako T, Ye J (2015) Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew Chem Int Ed 54:13561–13565

    Article  CAS  Google Scholar 

  15. Ding Z, Chen X, Antonietti M, Wang X (2011) Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem 4:274–281

    CAS  PubMed  Google Scholar 

  16. Zhang Y, Mori T, Ye J, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294–6295

    Article  CAS  PubMed  Google Scholar 

  17. Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng H-M (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648

    Article  CAS  PubMed  Google Scholar 

  18. Han Q, Hu C, Zhao F, Zhang Z, Chen N, Qu L (2015) One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. J Mater Chem A 3:4612–4619

    Article  CAS  Google Scholar 

  19. Zhou L, Wang L, Zhang J, Lei J, Liu Y (2016) Well-dispersed Fe2O3 nanoparticles on g-C3N4 for efficient and stable photo-Fenton photocatalysis under visible-light irradiation. Eur J Inorg Chem 2016:5387–5392

    Article  CAS  Google Scholar 

  20. Qiu J, Feng Y, Zhang X, Zhang X, Jia M, Yao J (2017) Facile stir-dried preparation of g-C3N4/TiO2 homogeneous composites with enhanced photocatalytic activity. RSC Adv 7:10668–10674

    Article  CAS  Google Scholar 

  21. Zhang Y, Mori T, Niu L, Ye J (2011) Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ Sci 4:4517–4521

    Article  CAS  Google Scholar 

  22. Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929

    Article  CAS  Google Scholar 

  23. Mori K, Itoh T, Kakudo H, Iwamoto T, Masui Y, Onaka M, Yamashita H (2015) Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water. Phys Chem Chem Phys 17:24086–24091

    Article  CAS  PubMed  Google Scholar 

  24. Sankir M, Sankir ND (2017) Hydrogen production technologies (Advances in hydrogen production and storage (AHPS)), 1 edn. Wiley-Scrivener, p 656

  25. Han Q, Wang B, Gao J, Cheng Z, Zhao Y, Zhang Z, Qu L (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751

    Article  CAS  Google Scholar 

  26. Zou L-R, Huang G-F, Li D-F, Liu J-H, Pana A-L, Huang W-Q (2016) A facile and rapid route for synthesis of g-C3N4 nanosheets with high adsorption capacity and photocatalytic activity. RSC Adv 6:86688–86694

    Article  CAS  Google Scholar 

  27. Iqbal W, Qiu B, Lei J, Wang L, Zhang J, Anpo M (2017) One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton Trans 46:10678–10684

    Article  CAS  PubMed  Google Scholar 

  28. Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652

    Article  CAS  Google Scholar 

  29. Stagi L, Chiriu D, Carbonaro CM, Corpino R, Ricci PC (2016) Structural and optical properties of carbon nitride polymorphs. Diam Relat Mater 68:84–92

    Article  CAS  Google Scholar 

  30. Zhao F, Cheng H, Hu Y, Song L, Zhang Z, Jiang L, Qu L (2014) Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. Sci Rep 4:5882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Mater Chem A 1:14766–14772

    Article  CAS  Google Scholar 

  32. Li G, Li L, Yuan H, Wang H, Zeng H, Shi J (2017) Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets. J Colloid Interface Sci 495:19–26

    Article  CAS  PubMed  Google Scholar 

  33. Holst JR (2009) Synthesis of inorganic heptazine-based materials. PhD thesis, University of Iowa, http://ir.uiowa.edu/etd/242

  34. Sattler A, Schnick W (2006) Kristallstruktur von Natrium-Dihydrogencyamelurat-Tetrahydrat Na[H2(C6N7)O3]·4H2O. Z Anorg Allg Chem 632:531–533

    Article  CAS  Google Scholar 

  35. Horvath-Bordon E, Kroke E, Svoboda I, Fueß H, Riedel R, Neeraj S, Cheetham AK (2004) Alkalicyamelurates, M3[C6N7O3]·xH2O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives. Dalton Trans (22):3900–3908

  36. El-Gamel NEA, Seyfarth L, Wagler J, Ehrenberg H, Schwarz M, Senker J, Kroke E (2007) The tautomeric forms of cyameluric acid derivatives. Chem Eur J 13:1158–1173

    Article  CAS  PubMed  Google Scholar 

  37. Braml NE, Schnick W (2013) New heptazine based materials with a divalent cation – Sr[H2C6N7O3]2·4H2O and Sr[HC6N7(NCN)3]·7H2O. Z Anorg Allg Chem 639:275–279

    Article  CAS  Google Scholar 

  38. Komatsu T (2001) The first synthesis and characterization of cyameluric high polymers. Macromol Chem Phys 202:19–25

    Article  CAS  Google Scholar 

  39. Sattler A, Budde MR, Schnick W (2009) Metal(II) Cyamelurates prepared from aqueous ammonia. Z Anorg Allg Chem 635:1933–1939

    Article  CAS  Google Scholar 

  40. Wagler J, El-Gamel NEA, Kroke E (2006) The structure and tautomerism of cyameluric acid. Z Naturforschung B 61:975–978

    Article  CAS  Google Scholar 

  41. Alkorta I, Jagerovic N, Elguero J (2004) Theoretical study of cyameluric acid and related compounds. ARKIVOC 4:130–136

    Google Scholar 

  42. Zhang W, Zhang Q, Dong F, Zhao Z (2013) The multiple effects of precursors on the properties of polymeric carbon nitride. Int J Photoenergy 2013:685038

    Google Scholar 

  43. Dyjak S, Kiciński W, Huczko A (2015) Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: towards an instant, large-scale synthesis of g-C3N4. J Mater Chem A 3:9621–9631

    Article  CAS  Google Scholar 

  44. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  CAS  Google Scholar 

  45. Brandenburg K (2000) DIAMOND, Release 2.1d. Crystal Impact GbR, Bonn

    Google Scholar 

  46. Smolin EM, Rapoport L (1959) The chemistry of heterocyclic compounds: s-triazines and derivatives. Interscience Publishers INC, New York

    Book  Google Scholar 

  47. Dunitz JD, Gavezzotti A, Rizzato S (2014) “Coulombic compression”, a pervasive force in ionic solids. A study of anion stacking in croconate salts. Cryst Growth Des 14:357–366

    Article  CAS  Google Scholar 

  48. Tafeenko VA, Gurskiy SI (2016) Disorder for the sake of order. Cryst Growth Des 16:940–945

    Article  CAS  Google Scholar 

  49. Knight C, Voth GA (2012) The curious case of the hydrated proton. Acc Chem Res 45:101–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work (XRD study) was supported in part by the M. V. Lomonosov Moscow State University Program of Development. The authors are grateful to V. V. Chernyshev for his kind assistance with the XRD experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid A. Aslanov.

Ethics declarations

We did not violate any ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushmeleva, A.S., Tafeenko, V.A., Zakharov, V.N. et al. Ammonium cyamelurates: synthesis and crystalline structures. Struct Chem 30, 425–434 (2019). https://doi.org/10.1007/s11224-018-1187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1187-0

Keywords

Navigation