Skip to main content
Log in

Cyclic peptide nanocapsule as ion carrier for halides: a theoretical survey

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, the encapsulations of halide ions including F, Cl, and Br by cyclic peptide nanocapsule as ion carrier (F, Cl, and Br @(Ala4...Ala4)) were investigated using the dispersion corrected density functional theory (DFT) employing CAM-B3LYP functional and the 6–311 + G (d, p) basis set in the gas phase. The electronic binding energy (Ebind), binding enthalpy (Hbind), and binding Gibbs free energy (Gbind) for each anion were calculated and showed that the stability order of the complexes based on their calculated Ebind is F > Cl > Br @(Ala4...Ala4). The calculated value of Gbind for F @(Ala4...Ala4) was − 29.77 kcal/mol showing the formation of this complex is thermodynamically favorable while the formation of Br @(Ala4...Ala4) is 14.35 kcal/mol which shows that the encapsulation of Br is not possible. The calculated value of Gbind for Cl @(Ala4...Ala4) was − 0.57 kcal/mol which shows that Cl ion can be reversibly stored inside the nanocapsule. The NBO analysis was also performed to investigate the charge transfer between two cyclic peptides in the complexes and also between the anion and the nanocapsule. The NBO analysis showed that the strongest hydrogen bonds between two cyclic peptides are in the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aakeroy CB, Rajbanshi A, Metrangolo P, Resnati G, Parisi MF, Tullio Pilati JD (2012) Cryst Eng Comm 14:6366–6368

    Article  CAS  Google Scholar 

  2. Suzuki A, Kondo K, Akita M, Yoshizawa M (2013) Angew Chem Int Ed 52:8120–8123

    Article  CAS  Google Scholar 

  3. Custelcean R, Bock A, Moyer BA (2010) J Am Chem Soc 132:7177–7185

    Article  CAS  PubMed  Google Scholar 

  4. Fiehn T, Goddard R, Seidel RW, Kubik S (2010) Chem Eur J 16:7241–7255

    Article  CAS  PubMed  Google Scholar 

  5. Cram DJ, Cram JM (1994) Container molecules and their guests. Monographs in Supramolecular Chemistry, RSC, Cambridge

    Google Scholar 

  6. Dumele O, Trapp N, Diederich F (2015) Angew Chem Int Ed 54:12339–12344

    Article  CAS  Google Scholar 

  7. Hof F, Craig SL, Nuckolls C, Rebek J (2002) Angew Chem Int Ed 41:1488–1508

    Article  CAS  Google Scholar 

  8. Fujita M (1998) Chem Soc Rev 27:417–425

    Article  CAS  Google Scholar 

  9. Sommer F, Kubik S (2014) Org Biomol Chem 12:8851–8860

    Article  CAS  PubMed  Google Scholar 

  10. Kubik S, Goddard R (2002) PNAS 99:5127–5732

    Article  CAS  PubMed  Google Scholar 

  11. Wlcek K, Svoboda M, Riha J, Zakaria S, Olszewski U, Dvorak Z, Sellner F (2011) Cancer Biol Ther 11:801–811

    Article  CAS  PubMed  Google Scholar 

  12. Hay BP, Firman TK, Moyer BA (2005) J Am Chem Soc 127:1810–1819

    Article  CAS  PubMed  Google Scholar 

  13. Huang X, Wu B, Jia C, Hay BP, Li M, Yang XJ (2013) Eur J 19:9034–9041

    Article  CAS  Google Scholar 

  14. Khansari ME, Hasan MH, Johnson CR, Williams NA, Powell DR, Wong BM, Tandon R, Hossain MA (2017) ACS Omega 2:9057–9066

    Article  CAS  Google Scholar 

  15. Rhaman MM, Hasan MH, Alamgir A, Lihua Xu L, Douglas R, Powell DR, Bryan M, Wong BW, Tandon R, Hossain MA (2018) Scientific Report 8:286–297

    Article  CAS  Google Scholar 

  16. Chen H, Gu L, Yin Y, Koh K, Lee J (2011) Int J Mol Sci 12:2315–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lo PK, Wong MS (2008) Sensors 8:5313–5335

    Article  CAS  PubMed  Google Scholar 

  18. Tang M, Fan JF, Liu J, He LJ, He K (2010) Prog Chem 22:648–653

    CAS  Google Scholar 

  19. Ranganathan D (2001) Acc Chem Res 34:919–930

    Article  CAS  PubMed  Google Scholar 

  20. Elmes RBP, Jolliffe KA (2015) Chem Commun 51:951–4968

    Google Scholar 

  21. Bhadbhade M, Jolliffe KA, Young PG, Clegg JK (2011) Chem Commun 47:463–465

    Article  Google Scholar 

  22. Huang H, Mu L, He J, Cheng JP (2002) Tetrahedron Lett 43:2255–2258

    Article  CAS  Google Scholar 

  23. Liu L, Chen S (2014) J Nanomater 2015: −7

  24. Shahangi F, Chermahini AN, Farrokhpour H, Teimouri A (2015) RSC Adv 5:2305–2317

    Article  CAS  Google Scholar 

  25. Chermahini ZJ, Chermahini AN (2016) Comput. Theor Chem 1078:37–46

    Article  CAS  Google Scholar 

  26. Chermahini ZJ, Chermahini AN (2016) J Mol Liq 214:101–110

    Article  CAS  Google Scholar 

  27. Chermahini ZJ, Chermahini AN, Dabbagh HA, Teimouri A (2015) J Incl Phenom Macro Chem 81:465–473

    Article  CAS  Google Scholar 

  28. Chermahini ZJ, Chermahini AN, Dabbagh HA, Teimouri A (2015) Struct Chem 26:675–684

  29. Chermahini AN, Rezapour A, Teimouri A (2014) J Incl Phenom Macro Chem 79:205–214

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.01. Gaussian Inc, Wallingford CT

  31. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

  32. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  34. Pramanik A, Powell DR, Wong BM, Hossain A (2012) Inorg Chem 51(7):4274–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng J, Zhu J, Liu B (2007) Chem Phys 333:105–111

    Article  CAS  Google Scholar 

  36. Zhu J, Cheng J, Liao Z, Lai Z, Liu B (2008) J Comput Aided Mol Des 22:773–781

    Article  CAS  PubMed  Google Scholar 

  37. Banerjee A, Yadav A (2013) Appl Nanosci 3:515–528

    Article  CAS  Google Scholar 

  38. Garcia-Fandino R, Castedo L, Granja JR, Vazquez SA (2010) J Phys Chem B 114:4973–4983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We also acknowledge the National High-Performance Computing Center of Iran (Rakhsh) for computational support of this work.

Funding

We would like to thank Isfahan University of Technology (IUT) for the financial support (Research Council Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi Chermahini, A., Farrokhpour, H., Shahangi, F. et al. Cyclic peptide nanocapsule as ion carrier for halides: a theoretical survey. Struct Chem 29, 1351–1357 (2018). https://doi.org/10.1007/s11224-018-1117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1117-1

Keywords

Navigation