Skip to main content
Log in

Phenylpyran-fused coumarin novel derivatives: combined photophysical and theoretical study on structural modification for PET-inhibited ICT emission

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Synthesis and characterizations of fluorescent derivatives of 2-amino-5-oxo-4, 5-dihydropyrano[3,2-c] chromene-3-carbonitrile class are presented. Detailed photophysical characterizations were performed with different substituents, which enabled getting into the details of structural modulation to understand and tune photophysical properties in this biologically important class of dyes. One of the synthesized nitro-substituted dye (4a) is non-fluorescent due to the photoinduced electron transfer (PET) process. PET is quenched and fluorescence emission is achieved by (i) reduction of the –NO2 group to the –NH2 group, (ii) substitution of –NO2 by different substituents (−N(Me)2, −Cl, and –OH groups), and (iii) aggregate formation of 4a in the tetrahydrofuran–water system resultant from aggregation-induced enhanced emission (AIEE). Synthesized derivatives having substituents (−NH2, −N(Me)2, −Cl and –OH group) are highly fluorescent. Synthesized dyes showed positive solvatochromism and enhanced photophysical properties as compared to parent dye 7-(diethylamino)-4-hydroxy-2H-chromen-2-one. ICT characteristics of dyes are in good correlation with solvent polarity plots, multilinear regression analysis of solvent parameters, and Mulliken–Hush analysis. Mathematically deduced global and local descriptors and computationally obtained molecular orbital calculations are supporting well the PET process in 4a and ICT process in other dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang G, Zhang Y, Yan J, Chen R, Wang S, Ma Y, Wang R (2012) One-pot enantioselective synthesis of functionalized pyranocoumarins and 2-amino-4H-chromenes: discovery of a type of potent antibacterial agent. J Org Chem 77:878–888. doi:10.1021/jo202020m

    Article  CAS  Google Scholar 

  2. Knierzinger A, Wolfbeis OS (1980) Syntheses of fluorescent dyes. IX. New 4-hydroxycoumarins, 4-hydroxy-2-quinolones, 2 H ,5 H -Pyrano[3,2- c ]benzopyran-2,5-diones and 2 H ,5 H -Pyrano[3,2- c ]quinoline-2,5-diones. J Heterocycl Chem 17:225–229. doi:10.1002/jhet.5570170204

    Article  CAS  Google Scholar 

  3. Thomas N, Zachariah SM (2013) Pharmacological activities of chromene derivatives: an overview. Asian J Pharm Clin Res 6:11–15

    CAS  Google Scholar 

  4. El-bayouki KAM, Aly MM, Mohamed YA, Basyouni WM, Abbas SY (2009) Novel 4 ( 3 H ) -quinazolinone containing biologically active thiazole , pyranochromene of expected biological activity. World J Chem 4:161–170

    CAS  Google Scholar 

  5. Sharom FJ, Liu R, Vinepal B (2010) Fluorescence studies of drug binding and translocation by membrane transporters. In: Yan Q (ed). Humana Press, Totowa, NJ, pp 133–148

  6. Kaur R, Naaz F, Sharma S, Mehndiratta S, Gupta MK, Bedi PMS, Nepali K (2015) Screening of a library of 4-aryl/heteroaryl-4H-fused pyrans for xanthine oxidase inhibition: synthesis, biological evaluation and docking studies. Med Chem Res 24:3334–3349. doi:10.1007/s00044-015-1382-0

    Article  CAS  Google Scholar 

  7. Yoshizaki Y, Mori T, Ishigami-Yuasa M, Kikuchi E, Takahashi D, Zeniya M, Nomura N, Mori Y, Araki Y, Ando F, Mandai S, Kasagi Y, Arai Y, Sasaki E, Yoshida S, Kagechika H, Rai T, Uchida S, Sohara E (2017) Drug-repositioning screening for Keap1-Nrf2 binding inhibitors using fluorescence correlation spectroscopy. Sci Rep 7:3945. doi:10.1038/s41598-017-04233-3

    Article  Google Scholar 

  8. Dehkordi MF, Dehghan G, Mahdavi M, Hosseinpour Feizi MA (2015) Multispectral studies of DNA binding, antioxidant and cytotoxic activities of a new pyranochromene derivative. Spectrochim Acta Part A Mol Biomol Spectrosc 145:353–359. doi:10.1016/j.saa.2015.03.026

    Article  CAS  Google Scholar 

  9. Dehkordi M, Dehghan G, Mahdavi M, Hosseinpour Feizi MA (2015) Investigation on the binding mode of 3, 4-dihydropyrano[c]chromene derivative with double strand DNA. Adv. Pharm Bull 5:477–481. doi:10.15171/apb.2015.065

    Article  Google Scholar 

  10. Udenfriend S, Zaltzman P (1962) Fluorescence characteristics of purines, pyrimidines, and their derivatives: measurement of guanine in nucleic acid hydrolyzates. Anal Biochem 3:49–59. doi:10.1016/0003-2697(62)90043-X

    Article  CAS  Google Scholar 

  11. Piétrement O, Pastré D, Landousy F, David MO, Fusil S, Hamon L, Zozime A, Cam EL (2005) Studying the effect of a charged surface on the interaction of bleomycin with DNA using an atomic force microscope. Eur Biophys J 34:200–207. doi:10.1007/s00249-004-0443-y

    Article  Google Scholar 

  12. Suzuki T, Matsuzaki T, Hagiwara H, Aoki T, Takata K (2007) Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochem Cytochem 40:131–137. doi:10.1267/ahc.07023

    Article  CAS  Google Scholar 

  13. Tiwari M, Oasa S, Yamamoto J, Mikuni S, Kinjo M (2017) A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell. Sci Rep 7:4336. doi:10.1038/s41598-017-04499-7

    Article  Google Scholar 

  14. Moore TA, Harter ML, Song PS (1971) Ultraviolet spectra of coumarins and psoralens. J Mol Spectrosc 40:144–157. doi:10.1016/0022-2852(71)90016-6

    Article  CAS  Google Scholar 

  15. Gourdeau H, Leblond L, Hamelin B, Desputeau C, Dong K, Kianicka I, Custeau D, Boudreau C, Geerts L, Cai SX (2004) Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4<em>H</em>-chromenes, a novel series of anticancer agents. Mol Cancer Ther 3:1375–1384

    CAS  Google Scholar 

  16. Jain N, Kanojia RM, Xu J, Jian-Zhong G, Pacia E, Lai MT, Du F, Musto A, Allan G, Hahn D, Lundeen S, Sui Z (2006) Novel chromene-derived selective estrogen receptor modulators useful for alleviating hot flushes and vaginal dryness. J Med Chem 49:3056–3059. doi:10.1021/jm060353u

    Article  CAS  Google Scholar 

  17. Cheng J-F, Ishikawa A, Ono Y, Arrhenius T, Nadzan A (2003) Novel chromene derivatives as TNF-α inhibitors. Bioorg Med Chem Lett 13:3647–3650. doi:10.1016/j.bmcl.2003.08.025

    Article  CAS  Google Scholar 

  18. Kamdar NR, Haveliwala DD, Mistry PT, Patel SK (2011) Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med Chem Res 20:854–864. doi:10.1007/s00044-010-9399-x

    Article  CAS  Google Scholar 

  19. Mladenović M, Mihailović M, Bogojević D, Matić S, Nićiforović N, Mihailović V, Vuković N, Sukdolak S, Solujić S (2011) In vitro antioxidant activity of selected 4-hydroxy-chromene-2-one derivatives—SAR, QSAR and DFT studies. Int J Mol Sci 12:2822–2841. doi:10.3390/ijms12052822

    Article  Google Scholar 

  20. Khoobi M, Alipour M, Moradi A, Sakhteman A, Nadri H, Razavi SF, Ghandi M, Foroumadi A, Shafiee A (2013) Design, synthesis, docking study and biological evaluation of some novel tetrahydrochromeno [3′,4′:5,6]pyrano[2,3-b]quinolin-6(7H)-one derivatives against acetyl and butyrylcholinesterase. Eur J Med Chem 68:291–300. doi:10.1016/j.ejmech.2013.07.045

    Article  CAS  Google Scholar 

  21. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Ensley TR, Bondar MV, Gerasov AO, Kovtun YP, Shandura MP, Kachkovski AD, Hagan DJ, Stryland EWV (2010) Efficient two-photon absorbing acceptor-pi-acceptor polymethine dyes. J Phys Chem A 114:6493–6501. doi:10.1021/jp100963e

    Article  CAS  Google Scholar 

  22. Huang ST, Jian JL, Peng HZ, Wang KL, Lin CM, Huang CH, Yang TCK (2010) The synthesis and optical characterization of novel iminocoumarin derivatives. Dyes Pigments 86:6–14. doi:10.1016/j.dyepig.2009.10.020

    Article  CAS  Google Scholar 

  23. Moeckli P (1980) Preparation of some new red fluorescent 4-cyanocoumarin dyes. Dyes Pigments 1:3–15. doi:10.1016/0143-7208(80)80002-7

    Article  CAS  Google Scholar 

  24. Raju BB, Varadarajan TS (1995) Spectroscopic studies of 7-diethylamino-3-styryl coumarins. J Photochem Photobiol A Chem 85:263–267. doi:10.1016/1010-6030(94)03905-A

    Article  Google Scholar 

  25. Kumar JSD, Das S (1997) Photoinduced electron transfer reactions of amines: synthetic applications and mechanistic studies. Res Chem Intermed 23:755–800

    Article  CAS  Google Scholar 

  26. Julliard M, Chanon M (1983) Photoelectron-transfer catalysis: its connections with thermal and electrochemical analogues. Chem Rev 83:425–506. doi:10.1021/cr00056a003

    Article  CAS  Google Scholar 

  27. Kavarnos GJ, Turro NJ (1986) Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem Rev 86:401–449. doi:10.1021/cr00072a005

    Article  CAS  Google Scholar 

  28. Weller A (1982) Photoinduced electron transfer in solution: Exciplex and radical ion pair formation free enthalpies and their solvent dependence. Z Phys Chem 133:93–98. doi:10.1524/zpch.1982.133.1.093

    Article  CAS  Google Scholar 

  29. Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10:1389–1398. doi:10.1002/cphc.200900238

    Article  CAS  Google Scholar 

  30. Mattay J (1989) Photoinduced electron transfer in organic synthesis. Synthesis (Stuttg) 1989:233–252. doi:10.1055/s-1989-27214

    Article  Google Scholar 

  31. Lewis FD (1986) Proton-transfer reactions of photogenerated radical ion pairs. Acc Chem Res 19:401–405. doi:10.1021/ar00132a004

    Article  CAS  Google Scholar 

  32. Yoon UC, Givens RS (1994) Mechanistic and synthetic aspects of amine-enone SET-photochemistry. Adv Electron Transf Chem 4:233–240

    Google Scholar 

  33. Jana S, Dalapati S, Guchhait N (2013) Excited state intramolecular charge transfer suppressed proton transfer process in 4-(diethylamino)-2-hydroxybenzaldehyde. J Phys Chem A 117:4367–4376. doi:10.1021/jp3120463

    Article  CAS  Google Scholar 

  34. Jadhav AG, Kothavale S, Sekar N (2017) Red emitting triphenylamine based rhodamine analogous with enhanced Stokes shift and viscosity sensitive emission. Dyes Pigments 138:56–67. doi:10.1016/j.dyepig.2016.11.021

    Article  CAS  Google Scholar 

  35. Gupta VD, Tathe AB, Padalkar VS, Umape PG, Sekar N (2013) Red emitting solid state fluorescent triphenylamine dyes: synthesis, photo-physical property and DFT study. Dyes Pigments 97:429–439. doi:10.1016/j.dyepig.2012.12.024

    Article  CAS  Google Scholar 

  36. Newman CR, Frisbie CD, daSilva FDA, Bre’das JL, Ewbank PC, Mann KR (2004) Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater 16:4436–4451. doi:10.1021/cm049391x

    Article  CAS  Google Scholar 

  37. Demeter A, Druzhinin SI, Kovalenko SA, Senyushkina TA, Zachariasse KA (2011) Dual fluorescence and ultrafast intramolecular charge transfer with 6-N,N-dialkylaminopurines. A two-state model. J Phys Chem A 115:1521–1537. doi:10.1021/jp109609f

    Article  CAS  Google Scholar 

  38. Druzhinin SI, Galievsky VA, Demeter A, Kovalenko SA, Senyushkina T, Dubbaka SR, Knochel P, Mayer P, Grosse C, Stalke D, Zachariasse KA (2015) Two-state intramolecular charge transfer (ICT) with 3,5-dimethyl-4-(dimethylamino)benzonitrile (MMD) and its meta-isomer mMMD. Ground state amino twist not essential for ICT. J Phys Chem A 119:11820–11836. doi:10.1021/acs.jpca.5b09368

    Article  CAS  Google Scholar 

  39. Schubert C, Rudolf M, Guldi DM, Takano Y, Mizorogi N, Herranz MA, Martin N, Nagase S, Akasaka T (2013) Rates and energetics of intramolecular electron transfer processes in conjugated metallofullerenes. Philos Trans R Soc A Math Phys Eng Sci 371:20120490–20120490. doi:10.1098/rsta.2012.0490

    Article  Google Scholar 

  40. Malval JP, Chaumeil H, Rettig W, Kharlanov V, Diemer V, Ay E, Morlet-Savary F, Poizat O (2012) Excited-state dynamics of phenol–pyridinium biaryl. Phys Chem Chem Phys 14:562–574. doi:10.1039/C1CP22829C

    Article  CAS  Google Scholar 

  41. Jadhav AG, Sekar N (2017) Substituent modulation from ESIPT to ICT emission in benzoimidazolphenyl-methanones derivatives: synthesis, photophysical and DFT study. J Solut Chem 46:777–797. doi:10.1007/s10953-017-0602-2

    Article  CAS  Google Scholar 

  42. Jung J, Dinescu A (2017) Emission pathway switching by solvent polarity: facile synthesis of benzofuran-bipyridine derivatives and turn-on fluorescence probe for zinc ions. Tetrahedron Lett 58:358–361. doi:10.1016/j.tetlet.2016.12.039

    Article  CAS  Google Scholar 

  43. Don D, Velmurugan K, Prabhu J, Bhuvanesh N, Thamilselvan A, Nandhakumar R (2017) A dual analyte fluorescent chemosensor based on a furan-pyrene conjugate for Al3+ & HSO3- Spectrochim Acta - Part A Mol Biomol Spectrosc 174:62–69. doi: 10.1016/j.saa.2016.11.021

  44. Tian Z, Liu Y, Tian B, Zhang J (2015) Synthesis and proton-induced fluorescence “OFF–ON” switching of a new D-π-A type pyran dye. Res Chem Intermed 41:525–533. doi:10.1007/s11164-013-1206-0

    Article  CAS  Google Scholar 

  45. Panchenko PA, Fedorov YV, Fedorova OA, Jonusauskas G (2013) Comparative analysis of the PET and ICT sensor properties of 1,8-naphthalimides containing aza-15-crown-5 ether moiety. Dyes Pigments 98:347–357. doi:10.1016/j.dyepig.2013.03.008

    Article  CAS  Google Scholar 

  46. Kim SY, Cho YJ, Lee AR, Son HJ, Han WS, Cho DW, Kang SO (2017) Influence of π-conjugation structural changes on intramolecular charge transfer and photoinduced electron transfer in donor–π–acceptor dyads. Phys Chem Chem Phys 19:426–435. doi:10.1039/C6CP06566J

    Article  CAS  Google Scholar 

  47. Varga M (2003) A novel orally active inhibitor of HLE. Eur J Med Chem 38:421–425. doi:10.1016/S0223-5234(03)00046-1

    Article  CAS  Google Scholar 

  48. Elsinghorst PW, Härtig W, Goldhammer S, Groshe J, Gutschow M (2009) A gorge-spanning, high-affinity cholinesterase inhibitor to explore β-amyloid plaques. Org Biomol Chem 7:3940. doi:10.1039/b909612d

    Article  CAS  Google Scholar 

  49. Wiener C, Schroeder CH, West BD, Link KP (1962) Studies on the 4-Hydroxycoumarins. XVIII. 1a 3-[α-(acetamidomethyl)benzyl]-4-hydroxycoumarin and related products 1b. J Org Chem 27:3086–3088. doi:10.1021/jo01056a024

    Article  CAS  Google Scholar 

  50. Dell PC, Bloxham J, Smith WC (1994) Preparation of some new benzylidenemalononitriles by an SNAr reaction: application to naphtho[1,2-b]pyran synthesis. Heterocycles 38:399. doi:10.3987/COM-93-6594

    Article  Google Scholar 

  51. Gong B, Hong F, Kohm C, Bonham L, Klein P (2004) Synthesis and SAR of 2-arylbenzoxazoles, benzothiazoles and benzimidazoles as inhibitors of lysophosphatidic acid acyltransferase-β. Bioorganic Med Chem Lett 14:1455–1459. doi:10.1016/j.bmcl.2004.01.023

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox J E, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT.

  53. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  54. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  55. Leu WCW, Fritz AE, Digianantonio KM, Hartley CS (2012) Push-pull macrocycles: donor-acceptor compounds with paired linearly conjugated or cross-conjugated pathways. J Org Chem 77:2285–2298. doi:10.1021/jo2026004

    Article  CAS  Google Scholar 

  56. Tathe AB, Sekar N (2016) Red-emitting NLOphoric carbazole-coumarin hybrids—synthesis, photophysical properties and DFT studies. Dye Pigment 129:174–185. Doi: http://dx.doi.org/10.1016/j.dyepig.2016.02.026

  57. Wang Q, Wang Q, Newton MD, Newton MD (2008) Structure, energetics, and electronic coupling in the (TCNE2)-• encounter complex in solution: a polarizable continuum study. J Phys Chem B 112:568–576. doi:10.1021/jp0753528

    Article  CAS  Google Scholar 

  58. Cave RJ, Newton MD (1997) Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken–Hush and block diagonalization methods. J Chem Phys 106:9213. doi:10.1063/1.474023

    Article  CAS  Google Scholar 

  59. Creutz C, Newton MD, Sutin N (1994) Metal—lingad and metal—metal coupling elements. J Photochem Photobiol A Chem 82:47–59. doi:10.1016/1010-6030(94)02013-2

    Article  CAS  Google Scholar 

  60. Jayabharathi J, Thanikachalam V, Perumal MV, Jayamoorthy K (2012) Solvatochromic studies of fluorescent azo dyes: Kamlet-Taft (π*, α and β) and Catalan (Spp, SA and SB) solvent scales approach. J Fluoresc 22:213–221. doi:10.1007/s10895-011-0948-6

    Article  CAS  Google Scholar 

  61. Warde U, Nagaiyan S (2017) Comprehensive study on excited state intramolecular proton transfer in 2-(benzo[d]thiazol-2-yl)-3-methoxynaphthalen-1-ol and 2-(benzo[d]thiazol-2-yl)naphthalene-1,3-diol: effect of solvent, aggregation, viscosity and TDDFT study. J Photochem Photobiol A Chem 337:33–43. doi:10.1016/j.jphotochem.2016.12.033

    Article  CAS  Google Scholar 

  62. Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities. J Am Chem Soc 99:6027–6038. doi:10.1021/ja00460a031

    Article  CAS  Google Scholar 

  63. Catalán J, Hopf H (2004) Empirical treatment of the inductive and dispersive components of solute−solvent interactions: the solvent polarizability (SP) scale. European J Org Chem 2004:4694–4702. doi:10.1002/ejoc.200400311

    Article  Google Scholar 

  64. Kathiravan A, Sundaravel K, Jaccob M, Dhinagaran G, Rameshkumar A, Ananth DA, Sivasudha T (2014) Pyrene Schiff base: photophysics, aggregation induced emission, and antimicrobial properties. J Phys Chem B 118:13573–13581. doi:10.1021/jp509697n

    Article  CAS  Google Scholar 

  65. De Proft F, Geerlings P (2001) Conceptual and computational DFT in the study of aromaticity. Chem Rev 101:1451–1464. doi:10.1021/cr9903205

    Article  Google Scholar 

  66. Bhide R, Jadhav AG, Sekar N (2016) Light fast monoazo dyes with an inbuilt photostabilizing unit: synthesis and computational studies. Fibers Polym 17:349–357. doi:10.1007/s12221-016-5717-3

    Article  CAS  Google Scholar 

  67. Singh RN, Kumar A, Tiwari RK, Rawat P, Manohar R (2013) Synthesis, molecular structure, and spectral analyses of ethyl-4-[(2,4-dinitrophenyl)-hydrazonomethyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate. Struct Chem 24:713–724. doi:10.1007/s11224-012-0112-1

    Article  CAS  Google Scholar 

  68. Rawat P, Singh RN (2015) Experimental and theoretical study of 4-formyl pyrrole derived aroylhydrazones. J Mol Struct 1084:326–339. doi:10.1016/j.molstruc.2014.12.045

    Article  CAS  Google Scholar 

  69. Mishra VR, Sekar N (2017) Photostability of coumarin laser dyes—a mechanistic study using global and local reactivity descriptors. J Fluoresc:1–8. doi:10.1007/s10895-017-2045-y

Download references

Acknowledgements

Amol G. Jadhav is grateful to UGC for financial support in terms of SRF. Suvidha S. Shinde and Dinesh S. Patil are grateful to UGC-SAP for financial support in terms of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, A.G., Shinde, S.S., Patil, D.S. et al. Phenylpyran-fused coumarin novel derivatives: combined photophysical and theoretical study on structural modification for PET-inhibited ICT emission. Struct Chem 29, 217–230 (2018). https://doi.org/10.1007/s11224-017-1021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1021-0

Keywords

Navigation