Skip to main content
Log in

Adatom doping-enriched geometric and electronic properties of pristine graphene: a method to modify the band gap

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We have investigated the way in which the concentration and distribution of adatoms affect the geometric and electronic properties of graphene. Our calculations were based on the use of first principle under the density functional theory which reveal various types of π-bonding. The energy band structure of this doped graphene material may be explored experimentally by employing angle-resolved photo-emission spectroscopy (ARPES) for electronic band structure measurements and scanning tunneling spectroscopy (STS) for the density-of-states (DOS) both of which have been calculated and reported in this paper. Our calculations show that such adatom doping is responsible for the destruction or appearance of the Dirac-cone structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tran NTT, Lin SY, Lin YT, Lin MF (2016) Chemical bonding-induced rich electronic properties of oxygen adsorbed few-layer graphenes. Phys Chem Chem Phys 18(5):4000–4007

    Article  Google Scholar 

  2. Tran NTT, Lin SY, Glukhova OE, Lin MF (2016) π-Bonding-dominated energy gaps in graphene oxide. RSC Adv 6(29):24458–24463

    Article  Google Scholar 

  3. Nakada K, Ishii A (2011) Migration of adatom adsorption on graphene using DFT calculation. Solid State Commun 151(1):13–16

    Article  CAS  Google Scholar 

  4. Brar VW, Decker R, Solowan HM, Wang Y, Maserati L, Chan KT, Lee H, Girit CO, Zettl A, Louie SG (2011) Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nat Phys 7(1):43–47

    Article  CAS  Google Scholar 

  5. Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene oxide. Nano Lett 9(3):1058–1063

    Article  CAS  Google Scholar 

  6. lian K-Y, Ji Y-F, Li X-F, Jin M-X, Ding D-J, Luo Y (2013) Big bandgap in highly reduced graphene oxide. J Phys Chem C 117(12):6049–6054

    Article  CAS  Google Scholar 

  7. Zanella I, Fagan SB, Mota R, Fazzio A (2008) Electronic and magnetic properties of Ti and Fe on graphene. Jour Phys Chem C 112(25):9163–9167

    Article  CAS  Google Scholar 

  8. Gao H, Zhou J, Lu M, Fa W, Chen Y (2010) First-principles study of the IVA group atoms adsorption on graphene. J Appl Phys 107(11):114311

    Article  Google Scholar 

  9. Dai J, Yuan J (2010) Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties. Phys Rev B 81(16):165414

    Article  Google Scholar 

  10. Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. Jour Phys 8(12):318

    Google Scholar 

  11. Gumbs G, Horing NJM, Iurov A, Dahal D (2016) Plasmon excitations for encapsulated graphene. J Phys D: Appl Phys 49(22):225101

    Article  Google Scholar 

  12. Gumbs G, Iurov A, Horing NJM (2015) Nonlocal plasma spectrum of graphene interacting with a thick conductor. Phys Rev B 91(23):235416

    Article  Google Scholar 

  13. Gumbs G, Iurov A, Huang D, Pan W (2015) Tunable surface plasmon instability leading to emission of radiation. J Appl Phys 118(5):054303

    Article  Google Scholar 

  14. Hwang EH, Sarma SD (2009) Plasmon modes of spatially separated double-layer graphene. Phys Rev B 80(20):205405

    Article  Google Scholar 

  15. Hwang EH, Sarma SD (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75(20):205418

    Article  Google Scholar 

  16. Beenakker CWJ (2008) Andreev reflection and Klein tunneling in graphene. Rev Mod Phys 80(4):1337

    Article  CAS  Google Scholar 

  17. Allain PE, Fuchs JN (2011) Klein tunneling in graphene: optics with massless electrons. Eur Phys J B 83 (3):301

    Article  CAS  Google Scholar 

  18. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  Google Scholar 

  19. Dahal D, Gumbs G (2017) Effect of energy band gap in graphene on negative refraction through the Veselago lens and electron conductance. J Phys Chem Solids 100:83–91

    Article  CAS  Google Scholar 

  20. Cheianov VV, Falko V, Altshuler BL (2007) The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 315(5816):1252–1255

    Article  CAS  Google Scholar 

  21. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of and μ. Sov Phys Uspekhi 10(4):509

    Article  Google Scholar 

  22. Gumbs G, Balassis A, Dahal D, Glasser ML (2016) Thermal smearing and screening in a strong magnetic field for Dirac materials in comparison with the two dimensional electron liquid. Eur Phys J B 89(10):234

    Article  Google Scholar 

  23. Katsnelson MI (2006) Nonlinear screening of charge impurities in graphene. Phys Rev B 74(20):201401

    Article  Google Scholar 

  24. Karthika P, Rajalakshmi N, Dhathathreyan KS (2013) Phosphorus- doped exfoliated graphene for supercapacitor electrodes. J Nano Sci Nanotechnol 13(3):1746–1751

    Article  CAS  Google Scholar 

  25. Xue Y, Zhu L, Chen H, Qu J, Dai L (2015) Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors. Carbon 92:305–310

    Article  CAS  Google Scholar 

  26. Chen Y, Zhang X, Zhang D, Yu P, Ma Y (2011) High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49(2):573–580

    Article  CAS  Google Scholar 

  27. Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotech 6(8):496–500

    Article  CAS  Google Scholar 

  28. Porro S, Accornero E, Pirri CF, Ricciardi C (2015) Memristive devices based on graphene oxide. Carbon 85:383–396

    Article  CAS  Google Scholar 

  29. Wang ZL, Xu D, Wang HG, Wu Z, Zhang XB (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7(3):2422–2430

    Article  CAS  Google Scholar 

  30. Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131

    Article  CAS  Google Scholar 

  31. Veerapandian M, Lee MH, Krishnamoorthy K, Yun K (2012) Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon 50(11):4228–4238

    Article  CAS  Google Scholar 

  32. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140

    Article  CAS  Google Scholar 

  33. Li F, Jiang X, Zhao J, Zhang S (2015) Graphene oxide: a promising nanomaterial for energy and environmental applications. Nano Energy 16:488–515

    Article  CAS  Google Scholar 

  34. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  35. Staudenmaier L (1898) Verfahren zur darstellung der graphitsure. Eur J Inorg Chem 31(2):1481–1487

    CAS  Google Scholar 

  36. Jr WSH, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  Google Scholar 

  37. Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4(11):3515–3522

    Article  CAS  Google Scholar 

  38. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mat 23(9):1089–1115

    Article  CAS  Google Scholar 

  39. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour J (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  40. Wu R, Wang Y, Chen L, Huang L, Chen Y (2015) Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. RSC Adv 5(61):49182–49187

    Article  CAS  Google Scholar 

  41. Wallace PR (1947) The band theory of graphite. Phys Rev 71(9):622

    Article  CAS  Google Scholar 

  42. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov A.A. (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  43. Tang L, Li X, Ji R, Teng KS, Tai G, Ye J, Wei C, Lau SP (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mat Chem 22(12):5676–5683

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  46. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  CAS  Google Scholar 

  47. Ito J, Nakamura J, Natori A (2008) Semiconducting nature of the oxygen-adsorbed graphene sheet. J Appl Phys 103(11): 113712

    Article  Google Scholar 

  48. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42(14):2929–2937

    CAS  Google Scholar 

  49. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipendra Dahal.

Additional information

“This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift: A Path through Quantum Crystallography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuy Tran, N.T., Dahal, D., Gumbs, G. et al. Adatom doping-enriched geometric and electronic properties of pristine graphene: a method to modify the band gap. Struct Chem 28, 1311–1318 (2017). https://doi.org/10.1007/s11224-017-0981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0981-4

Keywords

Navigation