Skip to main content
Log in

Heck coupling reactions catalysed by Pd particles generated in silica in the presence of an ionic liquid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Silica-supported Pd catalysts were synthesized in the presence of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Two samples with extremely low Pd loadings, 0.35Pd and 0.08Pd, with Pd contents 0.35 and 0.08%, respectively, were subjected to further investigations. Structural characterization was performed by ICP-AES and Raman measurements. Raman spectra indicated the presence of the ionic liquid in the Pd-silica samples. The samples were tested as catalysts in the Heck coupling reactions of methyl acrylate and styrene, with substituted bromoarenes and chloroarenes. Both samples proved to be highly efficient catalysts and displayed excellent activities and selectivities for the reactions of activated haloarenes including chloroarenes, which could be efficiently transformed without applying harsh reaction conditions. As expected, the presence of an electron withdrawing group (EWG) on the aromatic ring of the haloarene was found to increase both the conversion and the selectivity to an appreciable extent. For the transformations of bromoarenes, the sample with the lowest Pd loading proved to be a more efficient catalyst. Upon recycling of the catalysts, a considerable activity loss was detected, which was attributed to an extensive leaching of Pd into the solution, as confirmed by hot filtration measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Johansson CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062–5085

    Article  Google Scholar 

  2. Molnár Á (2011) Chem Rev 111:2251–2320

    Article  Google Scholar 

  3. Elazab HA, Siamaki AR, Moussa S, Gupton BF, El-Shall MS (2015) Appl Catal A Gen 491:58–69

    Article  CAS  Google Scholar 

  4. Wang P, Zhang G, Jiao H, Liu I, Deng X, Chen Y, Zheng X (2015) Appl Catal A Gen 489:188–192

    Article  CAS  Google Scholar 

  5. Zhao F, Murakami K, Shirai M, Arai M (2000) J Catal 194:479–483

    Article  CAS  Google Scholar 

  6. Reetz MT, de Vries JG (2004) Chem Commun 1559–1563

  7. Rocaboy C, Gladysz JA (2002) Org Lett 4:1993–1996

    Article  CAS  Google Scholar 

  8. Martinez AV, Mayoral JA, Garcia JI (2014) Appl Catal A Gen 472:21–28

    Article  CAS  Google Scholar 

  9. Amatore C, Jutand A (2000) Acc Chem Res 33:314–321

    Article  CAS  Google Scholar 

  10. Polshettiwar P, Len C, Fihri A (2009) Coord Chem Rev 253:2599–2626

    Article  CAS  Google Scholar 

  11. Köhler K, Wussow K, Wirth AS (2013) In: Molnár Á (ed) Palladium-catalyzed coupling reactions: practical aspects and future developments. Wiley-VCH, Weinheim

    Google Scholar 

  12. Stouten SC, Noel T, Wang Q, Hessel V (2015) Chem Eng J 279:143–148

    Article  CAS  Google Scholar 

  13. Garrett C, Prasad K (2004) Adv Synth Catal 346:889–900

    Article  CAS  Google Scholar 

  14. Cole-Hamilton DJ (2003) Science 299:1702–1706

    Article  CAS  Google Scholar 

  15. Beletskaya I, Cheprakov A (2000) Chem Rev 100:3009–3066

    Article  CAS  Google Scholar 

  16. Papp A, Miklós K, Forgó P, Molnár Á (2005) J Mol Catal A Chem 229:107–116

    Article  CAS  Google Scholar 

  17. Reetz MT, Westermann E, Lohmer R, Lohmer G (1998) Tetrahedron Lett 39:8449–8452

    Article  CAS  Google Scholar 

  18. Yao Q, Kinney EP, Yang Z (2003) J Org Chem 68:7528–7531

    Article  CAS  Google Scholar 

  19. Polshettiwar V, Molnár Á (2007) Tetrahedron 63:6949–6976

    Article  CAS  Google Scholar 

  20. Mastalir Á, Quiroga M, Szabó T, Zsigmond Á, Dékány I (2014) React Kinet Mech Catal 113:61–68

    Article  CAS  Google Scholar 

  21. Beller M, Fischer H, Kühlein K, Reisinger CP, Herrmann WA (1996) J Organomet Chem 520:257–259

    Article  CAS  Google Scholar 

  22. Djakovitch L, Koehler K (2001) J Am Chem Soc 123:5990–5999

    Article  CAS  Google Scholar 

  23. Yuranov I, Moeckli P, Suvorova E, Buffat P, Kiwi-Minsker L, Renken A (2003) J Mol Catal A Chem 192:239–251

    Article  CAS  Google Scholar 

  24. Calo V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, Ditaranto N (2004) Organometallics 23:5154–5158

    Article  CAS  Google Scholar 

  25. Corma A (1997) Chem Rev 97:2373–2419

    Article  CAS  Google Scholar 

  26. Taguchi A, Schüth F (2005) Micropor Mesopor Mat 77:1–45

    Article  CAS  Google Scholar 

  27. Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56–77

    Article  CAS  Google Scholar 

  28. Wight AP, Davis ME (2002) Chem Rev 102:3589–3613

    Article  CAS  Google Scholar 

  29. Anwander R (2001) Chem Mater 13:4419–4438

    Article  CAS  Google Scholar 

  30. On DT, Desplantier-Giscard D, Danumah C, Kaliaguine S (2003) Appl Catal A Gen 253:545–602

    Article  Google Scholar 

  31. Panpranot J, Pattamakomsan K, Goodwin JG, Praserthdam P (2004) Catal Commun 5:583–590

    Article  CAS  Google Scholar 

  32. Selvam P, Mohapatra SK, Sonavane SU, Jayaram RV (2004) Appl Catal B Environ 49:251–255

    Article  CAS  Google Scholar 

  33. Mathews CJ, Smith PJ, Welton T, White AJP, Williams DJ (2001) Organometallics 20:3848–3850

    Article  CAS  Google Scholar 

  34. Zhao D, Fei Z, Geldbach TJ, Scopelliti R, Dyson PJ (2004) J Am Chem Soc 126:15876–15882

    Article  CAS  Google Scholar 

  35. Hagiwara H, Sugawara Y, Isobe K, Hoshi T, Suzuki T (2004) Org Lett 6:2325–2328

    Article  CAS  Google Scholar 

  36. Okubo K, Shirai M, Yokoyama C (2002) Tetrahedron Lett 43:7115–7118

    Article  CAS  Google Scholar 

  37. Shi F, Zhang Q, Li D, Deng Y (2005) Chem Eur J 11:5279–5288

    Article  CAS  Google Scholar 

  38. Heidenreich RG, Köhler K, Krauter JGE, Pietsch J (2002) Synlett 1118–1122

  39. Jeffery T (1996) Tetrahedron 52:10113–10130

    Article  CAS  Google Scholar 

  40. Consorti CS, Flores FR, Dupont J (2005) J Am Chem Soc 127:12054–12065

    Article  CAS  Google Scholar 

  41. Reetz MT, Westermann E (2000) Angew Chem Int Ed 39:165–168

    Article  CAS  Google Scholar 

  42. Zhao FY, Shirai M, Ikushima Y, Arai M (2002) J Mol Catal A Chem 180:211–219

    Article  CAS  Google Scholar 

  43. Köhler K, Heidenreich RG, Krauter JGE, Pietsch J (2002) Chem Eur J 8:622–631

    Article  Google Scholar 

  44. Pröckl SS, Kleist W, Gruber MA, Köhler K (2004) Angew Chem Int Ed 43:1881–1882

    Article  Google Scholar 

  45. Widegren JA, Finke RG (2003) J Mol Catal A Chem 198:317–341

    Article  CAS  Google Scholar 

  46. Ananikov VP, Beletskaya IP (2012) Organometallics 31:1595–1604

    Article  CAS  Google Scholar 

  47. Sigeev AS, Peregudov AS, Cheprakov AV, Beletskaya IP (2015) Adv Synth Catal 357:417–429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Hungarian National Science Foundation through OTKA Grant K 109278 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Mastalir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucsi, I., Mastalir, Á., Molnár, Á. et al. Heck coupling reactions catalysed by Pd particles generated in silica in the presence of an ionic liquid. Struct Chem 28, 501–509 (2017). https://doi.org/10.1007/s11224-016-0892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0892-9

Keywords

Navigation