Skip to main content
Log in

Hypercoordinated carbon in C-doped boron fullerenes: a quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures and stability of C-doped boron fullerenes with the three-dimensional arrangement of non-classical pentacoordinated quasi-flat carbon centers were studied using the density functional theory (DFT) B3LYP/6-311+G(d,p) method. The doping with carbon atoms in apical positions above the five-membered rings stabilizes the spherical boron fullerene forms due to multicenter interactions of pz-orbitals of the carbons and adjacent boron atoms. Increasing in the size of the fullerene cluster is accompanied by change in the bonding pattern and by flattening of the hypercoordinated carbon centers. Endohedral metal atoms significantly affect on the structure and stability of the fullerene systems with hypercoordinated carbon centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. van’t Hoff JH (1874) Sur les formules de structure dans l’espace. Arch Neerl Sci Exactes Nat 9:445–454

    Google Scholar 

  2. LeBel JA (1874) Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bull Soc Chim Fr 22:337–347

    Google Scholar 

  3. Olah GA, Prakash GKS, Williams RE, Field LD, Wade K (1987) Hypercarbon chemistry. Wiley-Interscience, New York

    Google Scholar 

  4. Minkin VI, Minyaev RM, Zhdanov YA (1987) Nonclassical structures of organic compounds. Mir Publishers, Moscow

    Google Scholar 

  5. Minkin VI, Minyaev RM, Hoffmann R (2002) Nonclassical structures of organic compounds: Non-standard stereochemistry and hypercoordination. Russ Chem Rev 71:989–1015

    Google Scholar 

  6. Jemmis ED, Jayasree EG, Parameswaran P (2006) Hypercarbon in polyhedral structures. Chem Soc Rev 35:157–168

    Article  CAS  Google Scholar 

  7. Minyaev RM, Minkin VI (2008) Nonclassical carbon: from theory to experiment. Russ J Gen Chem 78:732–749

    Article  CAS  Google Scholar 

  8. Minyaev RM, Gribanova TN, Minkin VI (2013) In: Reedijk J, Poeppelmeier K (eds) Comprehensive Inorganic Chemistry II (Second Edition): From elements to applications, vol 9. Elsevier, Amsterdam, pp. 109–132

    Chapter  Google Scholar 

  9. Yang LM, Ganz E, Chen Z, Wang ZX, Schleyer PR (2015) Four decades of the chemistry of planar hypercoordinate compounds. Angew Chem Int Ed 54:9468–9501

    Article  CAS  Google Scholar 

  10. Olah GA (1974) In: Klopman G (ed) Chemical reactivity and reaction paths. Wiley, London

    Google Scholar 

  11. Olah GA, Schlosberg RH (1968) Chemistry in super acids. I. Hydrogen exchange and polycondensation of methane and alkanes in FSO3H-SbF5 (“magic acid”) solution. Protonation of alkanes and the intermediacy of CH5 + and related hydrocarbon ions. The high chemical reactivity of “paraffins” in ionic solution reactions. J Am Chem Soc 90:2726–2727

    Article  CAS  Google Scholar 

  12. Olah GA, Prakash GKS, Sommer J (1985) Superacids. Wiley, New York

    Google Scholar 

  13. Olah GA, Laali KK, Wang Q, Prakash GKS (1998) Onium Ions. Wiley, New York

    Google Scholar 

  14. Rasul G, Prakash GKS, Olah GA (1998) Calculated 1B–13C NMR chemical shift relationship in hypercoordinate methonium and boronium ions. Proc Natl Acad Sci 95:7257–7259

    Article  CAS  Google Scholar 

  15. Olah GA, Rasul G (1997) From Kekulé’s tetravalent methane to five-, six-, and seven-coordinate protonated methanes. Acc Chem Res 30:245–250

    Article  CAS  Google Scholar 

  16. Olah GA, Rasul G (1996) Comparison and search for CH5 3+ and CH6 4+ and their isoelectronic boron analogues BH5 2+ and BH6 3+. J Am Chem Soc 118:12922–12924

    Article  CAS  Google Scholar 

  17. Lammertsma K, Olah GA (1982) Diprotonated methane, CH6 2+, and diprotonated ethane, C2H8 2+. J Am Chem Soc 104:6851–6853

    Article  CAS  Google Scholar 

  18. Rasul G, Prakash GKS, Olah GA (2002) Ab initio GIAO-MP2-calculated structures and 11B-13C NMR chemical shift relationship in hypercoordinate onium-carbonium dications and isoelectronic onium-boronium cations. Proc Natl Acad Sci 99:9635–9638

    Article  CAS  Google Scholar 

  19. Lammertsma K, Barzaghi M, Olah GA, Pople JA, Schleyer PR, Simonetta M (1983) Structure and stability of diprotonated methane, СH6 2+. J Am Chem Soc 105:5258–5263

    Article  CAS  Google Scholar 

  20. Olah GA, Rasul G (1996) Triprotonated methane, СH7 3+: the parent heptacoordinate carbonium ion. J Am Chem Soc 118:8503–8504

    Article  CAS  Google Scholar 

  21. Olah GA (2001) 100 Years of carbocations and their significance in chemistry. J Org Chem 66:5943–5957

    Article  CAS  Google Scholar 

  22. Rasul G, Olah GA (1997) Hexa-, hepta-, and octacoordinate boronium ions: BH6 +, BH7 2+, and BH8 3+. Inorg Chem 36:1278–1281

    Article  CAS  Google Scholar 

  23. Talrose VL, Ljubimova AK (1952) Secondary processes in the ion source of a mass spectrometer. Doklady AN (USSR) 86:909–912

    Google Scholar 

  24. Schreiner PR (2000) Does CH5 + have (a) “structure?” A tough test for experiment and theory. Angew Chem Int Ed Engl 39:3239–3241

    Article  CAS  Google Scholar 

  25. Marx D, Parrinello M (1999) CH5 +: The cheshire cat smiles. Science 284:59–61

    Article  CAS  Google Scholar 

  26. Thompson KC, Crittenden DL, Jordan MJT (2005) СH5 +: chemistry’s chameleon unmasked. J Am Chem Soc 127:4954–4958

    Article  CAS  Google Scholar 

  27. Scherbaum F, Grohmann A, Huber B, Krüger C, Schmidbaur H (1988) “Aurophilicity” as a consequence of relativistic effects: the hexakis (triphenylphosphaneaurio) methane dication [(Ph3PAu)6C]2+. Angew Chem Int Ed Engl 27:1544–1546

    Article  Google Scholar 

  28. Scherbaum F, Grohmann A, Müller G, Schmidbaur H (1989) Synthesis, structure, and bonding of the cation [{(C6H5)3PAu}5C]+. Angew Chem Int Ed Engl 28:463–465

    Article  Google Scholar 

  29. Schmidbaur H (1993) Some new concepts in the chemistry of the p-block elements. Pure Appl Chem 65:691–698

    Article  CAS  Google Scholar 

  30. Häberlen OD, Schmidbaur H, Rösch N (1994) Stability of main-group element-centered gold cluster cations. J Am Chem Soc 116:8241–8248

    Article  Google Scholar 

  31. Görling A, Rösch N, Ellis DE, Schmidbaur H (1991) Electronic structure of main-group-element-centered octahedral gold clusters. Inorg Chem 30:3986–3994

    Article  Google Scholar 

  32. Williams RE (1971) Carboranes and boranes; polyhedra and polyhedral fragments. Inorg Chem 10:210–214

    Article  CAS  Google Scholar 

  33. Stohrer WD, Hoffmann R (1972) Bond-stretch isomerism and polytopal rearrangements in (CH)5 +, (CH)5 -, and (CH)4CO. J Am Chem Soc 94:1661–1668

    Article  CAS  Google Scholar 

  34. Masamune S, Sakai M, Ona H (1972) Nature of the (CH)5 + species. I. Solvolysis of 1, 5-dimethyltricyclo[2.1.0.02,5]pent-3-yl benzoate. J Am Chem Soc 94:8955–8956

    Article  CAS  Google Scholar 

  35. Masamune S, Sakai M, Ona H, Jones AJ (1972) Nature of the (CH)5 + species. II. Direct observation of the carbonium ion of 3-hydroxyhomotetrahedrane derivatives. J Am Chem Soc 94:8956–8958

    Article  CAS  Google Scholar 

  36. Hehre WJ, Schleyer PR (1973) Cyclopentadienyl and related (CH)5 + cations. J Am Chem Soc 95:5837–5839

    Article  CAS  Google Scholar 

  37. Minkin VI, Minyaev RM (2002) Pyramidane and pyramidal cations. Dokl Chem 385:502–507

    Article  Google Scholar 

  38. Schleyer PvR, Boldyrev AI (1991) A new, general strategy for achieving planar tetracoordinate geometries for carbon and other second row periodic elements. J Chem Soc Chem Commun 21:1536–1538

  39. Boldyrev AI, Wang LS (2001) Beyond classical stoichiometry: experiment and theory. J Phys Chem A 105:10759–10775

    Article  CAS  Google Scholar 

  40. Minyaev RM, Gribanova TN (2000) Stabilization of nonclassical types of valence bond orientation at the carbon atom in organoboron compounds. Russ Chem Bull Int Ed 49:783–793

    Article  CAS  Google Scholar 

  41. Exner K, Schleyer PR (2000) Planar hexacoordinate carbon: A viable possibility. Science 290:1937–1940

    Article  CAS  Google Scholar 

  42. Wang ZX, Schleyer PR (2001) Construction principles of “Hyparenes”: Families of molecules with planar pentacoordinate carbons. Science 292:2465–2469

    Article  CAS  Google Scholar 

  43. Minyaev RM, Gribanova TN, Starikov AG, Minkin VI (2002) Heptacoordinated carbon and nitrogen in a planar boron ring. Dokl Chem 382:41–45

    Article  CAS  Google Scholar 

  44. Minyaev RM, Gribanova TN, Starikov AG, Minkin VI (2001) Octacoordinated main-group element centres in a planar cyclic B8 environment: An ab initio study. Mendeleev Commun 6:213–214

    Article  Google Scholar 

  45. Gribanova TN, Minyaev RM, Minkin VI (2008) Theoretical design of planar systems with hypercoordinate p elements of the second period in a nonmetallic environment. Russ J Gen Chem 78:750–768

    Article  CAS  Google Scholar 

  46. Wang LM, Huang W, Averkiev BB, Boldyrev AI, Wang LS (2007) CB7 -: Experimental and theoretical evidence against hypercoordinate planar carbon. Angew Chem Int Ed 46:4550–4553

    Article  CAS  Google Scholar 

  47. Averkiev BB, Zubarev DY, Wang LM, Huang W, Wang LS, Boldyrev AI (2008) Carbon avoids hypercoordination in CB6 -, CB6 2-, and C2B5 - planar carbon-boron clusters. J Am Chem Soc 130:9248–9250

    Article  CAS  Google Scholar 

  48. Averkiev BB, Wang LM, Huang W, Wang LS, Boldyrev AI (2009) Experimental and theoretical investigations of CB8 -: towards rational design of hypercoordinated planar chemical species. Phys Chem Chem Phys 11:9840–9849

    Article  CAS  Google Scholar 

  49. Minkin VI, Minyaev RM (2004) Hypercoordinate carbon in polyhedral organic structures. Mendeleev Commun 14:43–46

    Article  Google Scholar 

  50. Minyaev RM, Minkin VI, Gribanova TN (2004) A quantum-chemical study of carbon sandwich compounds. Mendeleev Commun 14:96–98

    Article  Google Scholar 

  51. Minyaev RM, Gribanova TN (2005) Carbon, nitrogen, and oxygen hypercoordination in half-sandwich and sandwich structures. Russ Chem Bull 54:533–546

    Article  CAS  Google Scholar 

  52. Minyaev RM, Minkin VI, Gribanova TN, Starikov AG (2006) Sandwich compounds with central hypercoordinate carbon, nitrogen, and oxygen: A quantum-chemical study. Heteroatom Chem 17:464–474

    Article  CAS  Google Scholar 

  53. Minyaev RM, Gribanova TN, Minkin VI (2004) Hexacoordinated carbon in an organoboron cage. Dokl Chem 396:122–126

    Article  CAS  Google Scholar 

  54. Minyaev RM, Minkin VI, Gribanova TN, Starikov AG (2004) A hydrocarbon dication with nonplanar hexacoordinated carbon. Mendeleev Commun 14:47–48

    Article  Google Scholar 

  55. Gribanova TN, Gapurenko OA, Minyaev RM, Minkin VI (2005) Stabilization of octacoordinate carbon center in metal-containing derivatives of orthocarbonic acid. Russ Chem Bull 54:1989–1998

    Article  CAS  Google Scholar 

  56. Minyaev RM, Gribanova TN, Starikov AG, Gapurenko OA, Minkin VI (2005) Octacoordinated carbon in a boron-carbon cage. Dokl Chem 404:193–198

    Article  CAS  Google Scholar 

  57. Minyaev RM, Minkin VI, Gribanova TN, Starikov AG, Gapurenko OA (2006) Hypercoordinated carbon in endohedral hydrocarbon cage complexes C@C20H20 4- and C@C20H20•Li4. Dokl Chem 407:47–50

  58. Gribanova TN, Minyaev RM, Minkin VI (2006) Sandwich compounds of second-row elements: a quantum chemical study. Russ Chem Bull 55:1893–1903

    Article  CAS  Google Scholar 

  59. Gapurenko OA, Gribanova TN, Minyaev RM, Minkin VI (2007) Octacoordinate carbon atom in tetra(metalloamino)methanes CN 4M4 (M = Be, Mg, Ca): quantum-chemical investigation. Russ J Org Chem 43:685–690

    Article  CAS  Google Scholar 

  60. Gapurenko OA, Gribanova TN, Minyaev RM, Minkin VI (2007) Hypercoordinate atoms of second-row elements in dodecahedrane endohedral complexes. Russ Chem Bull 56:856–862

    Article  CAS  Google Scholar 

  61. Gribanova TN, Minyaev RM, Minkin VI (2008) Nonclassical systems with two hypercoordinate atoms in a polyhedral cage. Dokl Chem 418:10–14

    Article  CAS  Google Scholar 

  62. Gribanova TN, Gapurenko OA, Starikov AG, Minyaev RM, Minkin VI (2008) Hypercoordination of first-row elements in heteroanalogues of prismanes and propellanes. Dokl Chem 422:255–259

    Article  CAS  Google Scholar 

  63. Gribanova TN, Minyaev RM, Minkin VI (2009) Sandwich and multidecker sandwich derivatives of first-row elements (Be, C, N). Dokl Chem 424:1–6

    Article  CAS  Google Scholar 

  64. Gribanova TN, Minyaev RM, Minkin VI (2016) Structure and stability of the С-doped boron fullerenes B60С12 and B80C12 with quasi-planar pentacoordinated cage carbon atoms: a quantum-chemical study. Mendeleev Commun 26:485–487

  65. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  66. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  67. Foresman JB, Frisch E (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburg

    Google Scholar 

  68. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  69. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  70. Weinhold F, Landis CR (2012) Discovering chemistry with Natural Bond Orbitals. Wiley, Hoboken, NJ

    Book  Google Scholar 

  71. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis R, Weinhold F. (2013) NBO 6.0 Theoretical Chemistry Institute, University of Wisconsin, Madison

  72. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  73. Bader RFW (1998) A bond path: A universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  74. Keith TA (2011) AIMAll (Version 11.06.19) TK Gristmill Software, Overland Park, KS (http://aim.tkgristmill.com/)

  75. Zhurko GA (2016) ChemCraft software version 1.8. (http://www.chemcraftprog.com)

  76. Emsley J (1991) The elements. Clarendon Press, Oxford

    Google Scholar 

  77. Shaik S, Danovich D, Silvi B, Lauvergnat DL, Hiberty PC (2005) Charge-shift bonding - A class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. Chem Eur J 11:6358–6371

    Article  CAS  Google Scholar 

  78. Shaik S, Danovich D, Wu W, Hiberty PC (2009) Charge-shift bonding and its manifestations in chemistry. Nat Chem 1:443–449

    Article  CAS  Google Scholar 

  79. Bushmarinov IS, Lyssenko KA, Antipin MY (2009) Atomic energy in the “Atoms in Molecules” theory and its use for solving chemical problems. Russ Chem Rev 78:283–302

    Article  CAS  Google Scholar 

  80. Wu W, Gu J, Song J, Shaik S, Hiberty PC (2009) The inverted bond in [1.1.1] propellane is a charge-shift bond. Angew Chem Int Ed 48:1407–1410

    Article  CAS  Google Scholar 

  81. Shaik S, Danovich D, Braida B, Wu W, Hiberty PC (2016) New landscape of electron-pair bonding: covalent, ionic, and charge-shift bonds. Struct Bond 170:169–212

    Article  Google Scholar 

  82. Rzepa SH (2010) The rational design of helium bonds. Nat Chem 2:390–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (Grant 16-13-10050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan M. Minyaev.

Electronic supplementary material

ESM 1

(DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribanova, T.N., Minyaev, R.M. & Minkin, V.I. Hypercoordinated carbon in C-doped boron fullerenes: a quantum chemical study. Struct Chem 28, 357–369 (2017). https://doi.org/10.1007/s11224-016-0886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0886-7

Keywords

Navigation