Skip to main content
Log in

Application of hydroxyproline derivatives in enantioselective α-amination reactions in organic and aqueous environments: a structure-activity relationship study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We examined the activity of a series of L-hydroxyproline derivatives in enantioselective α-amination reaction between diethyl azodicarboxylate and propanal both in organic and aqueous media. In organic media most of the catalysts showed high activity and enantioselectivities comparable to that accessible with L-proline that is among the best catalysts in the reaction. The catalysts showed good activity under aqueous conditions as well; however, only low enantioselectivities were obtained in this case, primarily due to the racemisation of the product under the reaction conditions. Thus, the attempted achiral acid/base additive-driven stereocontrol was not feasible on a practical level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. List B (2002) J Am Chem Soc 124:5656–5657

    Article  CAS  Google Scholar 

  2. Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA (2002) Angew Chem Int Ed 41:1790–1793

    Article  Google Scholar 

  3. Kumaragurubaran N, Juhl K, Zhuang W, Bøgevig A, Jørgensen KA (2002) J Am Chem Soc 124:6254–6255

    Article  CAS  Google Scholar 

  4. Duthaler RO (2003) Angew Chem Int Ed 42:975–978

    Article  CAS  Google Scholar 

  5. Bartók M (2010) Chem Rev 110:1663–1705

    Article  Google Scholar 

  6. Escorihuela J, Burguete MI, Luis SV (2013) Chem Soc Rev 42:5595–5617

    Article  CAS  Google Scholar 

  7. Franzén J, Marigo M, Fielenbach D, Wabnitz TC (2005) Kjærsgaard, Jørgensen KA. J Am Chem Soc 127:18296–18304

    Article  Google Scholar 

  8. Dinér P, Kjærsgaard A, Lie MA, Jørgensen KA (2008) Chem Eur J 14:122–127

    Article  Google Scholar 

  9. Blackmond DG, Moran A, Hughes M, Armstrong A (2010) J Am Chem Soc 132:7598–7599

    Article  CAS  Google Scholar 

  10. Kanzian T, Lakhdar S, Mayr H (2010) Angew Chem Int Ed 49:9526–9529

    Article  CAS  Google Scholar 

  11. Hein JE, Armstrong A, Blackmond DG (2011) Org Lett 13:4300–4303

    Article  CAS  Google Scholar 

  12. Hein JE, Burés J, Y-H L, Hughes M, Houk KN, Armstrong A, Blackmond DG (2011) Org Lett 13:5644–5647

    Article  CAS  Google Scholar 

  13. Sharma AK, Sunoj RB (2011) Chem Commun 47:5759–5761

    Article  CAS  Google Scholar 

  14. Schmid MB, Zeitler K, Gschwind RM (2012) Chem Eur J 18:3362–3370

    Article  CAS  Google Scholar 

  15. Fu A, Tian C, Li H, Li P, Chu T, Wang Z, Liu J (2015) Chem Phys 455:65–72

    Article  CAS  Google Scholar 

  16. Darbre T, Machuqueiro M (2003) Chem Commun 1090–1091

  17. Zhong L, Xiao J, Li C (2006) J Catal 243:442–445

    Article  CAS  Google Scholar 

  18. Breslow R, Ramalingam V, Appayee C (2013) Orig Life Evol Biosph 43:323–329

    Article  Google Scholar 

  19. Szőllősi G, Fekete M, Gurka AA, Bartók M (2014) Catal Lett 144:478–486

    Article  Google Scholar 

  20. Gurka AA, Szőri K, Szőllősi G, Bartók M, London G (2015) Tetrahedron Lett 56:7201–7205

    Article  CAS  Google Scholar 

  21. Gurka AA, Szőri K, Bartók M, London G (2016) Tetrahedron Asymm 27:936–942

    Article  CAS  Google Scholar 

  22. Hayashi Y, Aratake S, Imai Y, Hibino K, Chen Q-Y, Yamaguchi J, Uchimaru T (2008) Chem Asian J 3:225–232

    Article  CAS  Google Scholar 

  23. Msutu A, Hunter R (2014) Tetrahedron Lett 55:2295–2298

    Article  CAS  Google Scholar 

  24. Mlynarski J, Baś S (2014) Chem Soc Rev 43:577–587

    Article  CAS  Google Scholar 

  25. Bartók M, Dombi G (2014) Curr Green Chem 1:191–201

    Article  Google Scholar 

  26. Chemical Computing Group Inc. (2004) Molecular Operating Environment (MOE). Sci. Comput. Instrum. Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal.

  27. Halgren TA (2000) J Comput Chem 17:520–552

    Article  Google Scholar 

  28. Labute P (2008) J Comput Chem 29:1693–1698

    Article  CAS  Google Scholar 

  29. Devlin FJ, Finley JW, Stephens PJ, Frisch MJ (1995) J Phys Chem 99:16883–16902

    Article  CAS  Google Scholar 

  30. Becke A, Becke A (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Baron V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, Revision C.01. Wallinford, CT.

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  33. For the synthesis of the catalysts, see refs 20 and 21.

  34. Ötvös SB, Szloszar A, Mandity IM, Fülöp F (2015) Adv Synth Catal 357:3671–3680

    Article  Google Scholar 

  35. Kotrusz P, Alemayehu S, Toma Š, Schmalz H-G, Adler, A (2005) Eur J Org Chem 4904–4911

  36. Baumann T, Bächle M, Hartmann C, Bräse S (2008) Eur J Org Chem 2207–2212

  37. Zhang Q, Parker E, Headley AD, Ni B (2010) Synlett 2453–2456

Download references

Acknowledgments

Financial support from the National Research, Development and Innovation Office, Hungary (OTKA Grants K 109278 and PD 115436), is gratefully acknowledged. Z. Szécsényi (Institute of Pharmaceutical Chemistry, University of Szeged) is acknowledged for technical support. M. S. was supported by a Magyary Zoltán fellowship within the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 (A2-MZPD-12-0139) and he is currently János Bolyai Research Scholar of the Hungarian Academy of Sciences (BO/00113/15/7). G. L. acknowledges the János Bolyai Research Scholarship from the Hungarian Academy of Sciences. We thank the anonymous reviewers for their insightful comments, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihály Bartók or Gábor London.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurka, A.A., Szőri, K., Szőri, M. et al. Application of hydroxyproline derivatives in enantioselective α-amination reactions in organic and aqueous environments: a structure-activity relationship study. Struct Chem 28, 415–421 (2017). https://doi.org/10.1007/s11224-016-0873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0873-z

Keywords

Navigation