Skip to main content

Advertisement

Log in

The response electron–electron repulsion energy and energy component analysis in CC/MBPT methods

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular properties are computed as responses to perturbations (energy derivatives) in coupled-cluster (CC)/many-body perturbation theory (MBPT) models. Here, the CC/MBPT energy derivative with respect to a general two-electron (2-e) perturbation is assembled from gradient theory for 2-e property evaluation, including the electron repulsion energy. The correlation energy (∆E) is shown to be the sum of response kinetic (∆T), electron–nuclear attraction (∆V), and electron repulsion (∆V ee ) energies. Thus, evaluation of total V ee for energy component analysis is simple: For total energy (E), total 1-e responses T and V, and nuclear–nuclear repulsion energy (V NN ), V ee  = E − V NN  − T − V is the true 2-e response value. Component energy analysis is illustrated in an assessment of steric repulsion in ethane’s rotational barrier. Earlier SCF-based results (Bader et al. in J Am Chem Soc 112:6530, 1990) are corroborated: The higher-energy eclipsed geometry is favored versus staggered in the two repulsion energies (V NN and V ee ), while decisively disfavored in electron–nuclear attraction energy (V). Our best quality calculations (CCSD/cc-pVQZ) attain practical Virial Theorem compliance (i.e., agreement among the kinetic energy, potential energy, and total energy representations) in assigning 2.70 ± 0.06 to the barrier height; −195.80 kcal/mol is assigned to the drop in “steric” repulsion upon going to the eclipsed geometry. Steric repulsion is not responsible for any fraction of the ~3 kcal/mol barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The derivative of an occ.–occ. Fock element (e.g., \( f_{ij}^{A} \)) shown in Eq. (5) yields three nonzero terms: the CPHF perturbation matrix (e.g., \( Q_{ij}^{\chi } = \sum\limits_{k} {\left\langle {ik||jk} \right\rangle } \), formerly weighted by χ), and two orbital derivative terms from the Fock effective potential. All other orbital derivative terms are zero because they expand into products of CPHF coefficients and vir.–occ. Fock elements—which are all zero under the SCF condition. For example, \( f_{{i^{\chi } j}} = \sum\limits_{a} {U_{ai}^{\chi } f_{aj} } \, = 0 \). It is likewise for the derivative of a vir.–vir. Fock term (e.g., \( f_{ab}^{A} \)).

  2. Insertion of identity in the space of the reference and excited determinants \( \left[ {\hat{1} = |0 > < 0| + |\varPhi > < \varPhi |} \right] \) produces two new terms which vanish independently: \( \left\langle {0|\varLambda |0} \right\rangle \left\langle {0|(H_{N}^{{}} e^{T} )_{c} |0} \right\rangle + \left\langle {0|\varLambda |\varPhi } \right\rangle \left\langle {\varPhi |(H_{N}^{{}} e^{T} )_{c} |0} \right\rangle \). In the first, \( \left\langle {0|\varLambda |0} \right\rangle = 0 \) (de-excitation operator acting on the reference is zero), and in the second, \( \left\langle {\varPhi |(H_{N}^{{}} e^{T} )_{c} |0} \right\rangle = 0 \) (condition satisfied by the t amplitudes in CC theory).

References

  1. Salter EA, Trucks GW, Bartlett RJ (1989) Analytic energy derivatives in many-body methods. I. First derivatives. J Chem Phys 90:1752–1766

    Article  Google Scholar 

  2. Salter EA, Trucks GW, Fitzgerald G, Bartlett RJ (1987) Theory and application of MBPT(3) gradients: the density approach. Chem Phys Lett 141:61–70

    Article  CAS  Google Scholar 

  3. Trucks GW, Salter EA, Sosa C, Bartlett RJ (1988) Theory and implementation of the MBPT density matrix. An application to one-electron properties. Chem Phys Lett 147:359–366

    Article  CAS  Google Scholar 

  4. Trucks GW, Salter EA, Noga J, Bartlett RJ (1988) Analytic many-body perturbation theory MBPT(4) response properties. Chem Phys Lett 150:37–44

    Article  CAS  Google Scholar 

  5. Fitzgerald GB, Harrison RJ, Bartlett RJ (1986) Analytic energy gradients for general coupled-cluster methods and fourth-order many-body perturbation theory. J Chem Phys 85:5143–5150

    Article  CAS  Google Scholar 

  6. Bartlett RJ (1985) In: Jorgensen P, Simons J (eds) Geometrical derivatives of energy surfaces and molecular properties. Reidel, Dordrecht

    Google Scholar 

  7. Jorgensen P, Simons J (1983) Ab initio analytical molecular gradients and Hessians. J Chem Phys 79:334–357

    Article  Google Scholar 

  8. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Derivative studies in Hartree–Fock and Møller–Plesset theories. Int J Quantum Chem Symp 13:225–241

    CAS  Google Scholar 

  9. Gauss J, Cremer D (1987) Implementation of analytical energy gradients at third- and fourth-order Møller–Plesset perturbation theory. Chem Phys Lett 138:131–140

    Article  CAS  Google Scholar 

  10. Scheiner AC, Scuseria GE, Rice JE, Lee TJ, Schaefer HF III (1987) Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: theory and application. J Chem Phys 87:5361–5373

    Article  CAS  Google Scholar 

  11. Jorgensen P, Simons J (1981) Second quantization methods in quantum chemistry. Academic Press, New York

    Google Scholar 

  12. Paldus J, Cizek J (1975) Time-independent diagrammatic approach to perturbation theory of fermion systems. Adv Quantum Chem 9:105–197

    Article  CAS  Google Scholar 

  13. Kobayashi R, Handy NC, Amos RD, Trucks GW, Frisch MJ, Pople JA (1991) Gradient theory applied to the Brueckner doubles method. J Chem Phys 95:6723–6733

    Article  CAS  Google Scholar 

  14. Handy NC, Amos RD, Gaw JF, Rice JE, Simandiras ED (1985) Chem Phys Lett 120:151–158

    Article  CAS  Google Scholar 

  15. Moccia R (1970) Variable bases in SCF MO calculations. Chem Phys Lett 5:260–264

    Article  CAS  Google Scholar 

  16. Pulay P (1969) Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules: I. Theory. Mol Phys 17:197–204

    Article  CAS  Google Scholar 

  17. Pulay P (1970) Ab initio calculation of force constants in polyatomic molecules: II. The force constants of water. Mol Phys 18:473–480

    Article  CAS  Google Scholar 

  18. Monkhorst HJ (1977) Calculation of properties with the coupled-cluster method. Int J Quantum Chem Symp 11:421–432

    Google Scholar 

  19. Smith LG (1949) The infra-red spectrum of C2H6. J Chem Phys 17:139–167

    Article  Google Scholar 

  20. Pitzer KS (1951) Potential energies for rotation about single bonds. Discuss Faraday Soc 10:66–73

    Article  Google Scholar 

  21. Hoyland JR (1968) Ab initio bond-orbital calculations. I. Application to methane, ethane, propane, and propylene. J Am Chem Soc 90:2227–2232

    Article  CAS  Google Scholar 

  22. Brunck TK, Weinhold F (1979) Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds. J Am Chem Soc 101:1700–1709

    Article  CAS  Google Scholar 

  23. PvR Schleyer, Knupp M, Hampel F, Bremer M, Mislow K (1992) Relationships in the rotational barriers of all Group 14 ethane congeners H3X-YH3 (X, Y = C, Si, Ge, Sn, Pb). Comparisons of ab initio pseudopotential and all-electron results. J Am Chem Soc 114:6791–6797

    Article  Google Scholar 

  24. Pophristic V, Goodman L (2001) Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature 411:565–568

    Article  CAS  Google Scholar 

  25. Bickelhaupt FW, Baerends EJ (2003) The case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed 42:4183–4188

    Article  CAS  Google Scholar 

  26. Weinhold F (2003) Rebuttal to the Bickelhaupt–Baerends case for steric repulsion causing the staggered conformation of ethane. Angew Chem Int Ed 42:4188–4194

    Article  CAS  Google Scholar 

  27. Bader RFW, Cheeseman JR, Laidig KE, Wiberg KB, Breneman C (1990) Origin of rotation and inversion barriers. J Am Chem Soc 112:6530–6536

    Article  CAS  Google Scholar 

  28. Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. Angew Chem 116:2020–2024

    Article  Google Scholar 

  29. Mo Y, Gao J (2007) Theoretical analysis of the rotational barrier of ethane. Acc Chem Res 40:113–119

    Article  CAS  Google Scholar 

  30. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131:014102–014116

    Article  Google Scholar 

  31. Liu S (2013) Origin and nature of bond rotation barriers: a unified view. J Phys Chem A 117:962–965

    Article  CAS  Google Scholar 

  32. Liu S, Govind N (2008) Toward understanding the nature of internal rotation barriers with a new energy partition scheme: ethane and n-butane. J Phys Chem A 112:6690–6699

    Article  CAS  Google Scholar 

  33. Esquivel RO, Lui S, Angulo JC, Dehesa JS, Antolin J, Molina-Espiritu M (2011) Fisher information and steric effect: study of the internal rotation barrier of ethane. J Phys Chem A 115:4406–4415

    Article  CAS  Google Scholar 

  34. Pendas AM, Blanco MA, Francisco E (2009) Steric repulsions, rotation barriers, and stereoelectronic effects: a real space perspective. J Comp Chem 30:98–109

    Article  CAS  Google Scholar 

  35. Baranac-Stojanovic M (2015) Theoretical analysis of the rotational barrier in ethane: cause and consequences. Struct Chem 26:989–996

    Article  CAS  Google Scholar 

  36. Cortes-Guzman F, Cuevas G, Pendas AM, Hernandez-Trujillo J (2015) The rotational barrier of ethane and some of its hexasubstituted derivatives in terms of the forces acting on the electron distribution. J Phys Chem Chem Phys 17:19021–19029

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford

  38. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  39. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  40. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  41. Kendall RA, Dunning TH Jr, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  42. Weiss S, Leroi GE (1968) Direct observation of the infrared torsional spectrum of C2H6, CH3CD3, and C2D6. J Chem Phys 48:962–967

    Article  CAS  Google Scholar 

  43. Hirota E, Saito S, Endo Y (1979) Barrier to internal rotation in ethane from the microwave spectrum of CH3CHD2. J Chem Phys 71:1183–1187

    Article  CAS  Google Scholar 

  44. Moazzen-Ahmadi N, Gush HP, Halpern M, Jagannath H, Leung A, Ozier I (1988) The torsional spectrum of CH3CH3. J Chem Phys 88:563–577

    Article  CAS  Google Scholar 

  45. Herrebout WA, van der Veken BJ, Wang A, Durig JR (1995) Enthalpy difference between conformers of n-butane and the potential function governing conformational interchange. J Phys Chem 99:578–585

    Article  CAS  Google Scholar 

  46. Murcko MA, Castejon H, Wiberg KB (1996) Carbon-carbon rotational barriers in butane, 1-butene, and 1,3-butadiene. J Phys Chem 100:16162–16168

    Article  CAS  Google Scholar 

  47. Allinger NL, Fermann JT, Allen WD, Schaefer HF III (1997) The torsional conformations of butane: definitive energetics from ab initio methods. J Chem Phys 106:5143–5150

    Article  CAS  Google Scholar 

  48. Stojanovic M, Aleksic J, Baranac-Stojanovic M (2015) The effect of steric repulsion on the torsional potential of n-butane: a theoretical study. Tetrahedron 71:5119–5123

    Article  CAS  Google Scholar 

  49. Arbuznikov AV, Vaara J, Kaupp M (2004) Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory. J Chem Phys 120:2127–2139

    Article  CAS  Google Scholar 

  50. Vaara J, Ruud K, Vahtras O, Agren H, Jokisaari J (1998) Quadratic response calculations of the electronic spin-orbit contribution to nuclear shielding tensors. J Chem Phys 109:1212–1222

    Article  Google Scholar 

  51. Malkina OL, Schimmelpfennig B, Kaupp M, Hess BA, Chandra P, Wahlgren U, Malkin VG (1998) Spin-orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? Chem Phys Lett 296:93–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Alabama Supercomputer Authority for computational resources and technical support. EAS thanks Prof. R. J. Bartlett for comments regarding the theory of CC properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Salter.

Appendix

Appendix

First, inspection of each of the 1-e parts of \( H_{N}^{A\chi } ,H_{N}^{B\lambda } ,\, {\text{and}}\,H_{N}^{C\gamma } \), [see Eq. (6)] allows us to assign the respective CPHF perturbation matrices for the three individual perturbations:

$$ Q_{pq}^{\chi } = \sum\limits_{k} {\left\langle {pk||qk} \right\rangle } ,\quad Q_{pq}^{\lambda } = T_{pq} ,\quad {\text{and}}\quad Q_{pq}^{\gamma } = V_{pq} . $$

Clearly, their sum is the unperturbed Fock matrix \( \left( {f_{pq} } \right) \):

$$ Q_{pq}^{\chi } + Q_{pq}^{\lambda } + Q_{pq}^{\gamma } = f_{pq}^{{}} $$

Second, from CPHF theory and the choice of a particular set of noncanonical SCF orbitals, we expand the derivative of any virtual orbital (a) in terms of occupied orbitals (i) only [1417]:

$$ a^{\chi } = - \sum\limits_{i} {U_{ai}^{\chi } i = - \sum\limits_{i} {\sum\limits_{bj} {B_{ai,bj} Q_{bj}^{\chi } i} } } ;\quad {\text{where}}\quad B_{ai,bj} = \frac{{A_{ai,bj}^{ - 1} }}{{(\varepsilon_{i} - \varepsilon_{b} )}}\quad {\text{and}}\quad A_{ai,bj} = \delta_{ai,bj} + \frac{{\left\langle {ab||ij} \right\rangle + \left\langle {aj||ib} \right\rangle }}{{(\varepsilon_{a} - \varepsilon_{i} )}} \, . $$

The expansion is fairly simple because there is no displacement of atomic orbitals for this kind of perturbation. Likewise, \( a^{\lambda } \;{\text{and}}\;a^{\gamma } \) are expanded. Collecting the sum of the three derivatives:

$$ a^{\chi } + a^{\lambda } + a^{\gamma } = - \sum\limits_{i} {\left( {U_{ai}^{\chi } + U_{ai}^{\lambda } + U_{ai}^{\gamma } } \right)i = - \sum\limits_{i} {\sum\limits_{bj} {B_{ai,bj} \left( {Q_{bj}^{\chi } + Q_{bj}^{\gamma } } \right)} } } i = - \sum\limits_{i} {\sum\limits_{bj} {B_{ai,bj} f_{bj} = 0} } , $$

since the elements of the vir.–occ block of the Fock matrix are all zeroes. A similar argument holds for the derivative of any occupied orbital (i): \( i^{\chi } + i^{\lambda } + i^{\gamma } = 0 \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salter, E.A., Wierzbicki, A. The response electron–electron repulsion energy and energy component analysis in CC/MBPT methods. Struct Chem 27, 1501–1509 (2016). https://doi.org/10.1007/s11224-016-0775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0775-0

Keywords

Navigation