Skip to main content
Log in

Structure of hydrogen tetroxide in gas phase and in aqueous environments: relationship to the hydroperoxyl radical self-reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen polyoxides are important species in atmospheric chemistry, advanced oxidation processes for wastewater treatment, and biological processes, among other fields. However, the electronic structure and chemical properties of the largest synthesized members of this chemical family remain poorly understood. In the present work, we have carried out a detailed theoretical study of hydrogen tetroxide (HO4H), which is a reaction intermediate of the hydroperoxyl radical (HO2) self-reaction. We have considered the molecule in gas phase, in microhydrated environments, in bulk water solution, and at the air–water interface. Very high level ab initio calculations have been carried out to describe the isolated molecule and the water complexes. Combined QM/MM molecular dynamics simulations have been performed to describe the system in liquid water and at the water surface. We show that the interactions with water strongly stabilize the tetraoxide adduct with respect to the (HO2)2 dimer. The chemical process leading to hydrogen tetroxide from two separated hydroperoxyl radicals is predicted to be an exothermic and exergonic reaction at 298 K in all the studied media, with the reaction free energy being slightly smaller (in absolute value) in the condensed phase with respect to the gas phase. An estimation of the pKa of hydrogen tetroxide has been reported (7.3), which suggests that this species is less acidic than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levanov AV, Isaykina OY, Antipenko EE, Lunin VV (2015) Chem Phys 447:10–14

    Article  CAS  Google Scholar 

  2. Denis PA, Huelmo CP (2014) Mol Phys 112:3047–3056

    Article  CAS  Google Scholar 

  3. Levanov AV, Isaikina OY, Antipenko EE, Lunin VV (2014) Russ J Phys Chem A 88:1488–1492

    Article  CAS  Google Scholar 

  4. Levanov AV, Isaykina OY, Antipenko EE, Lunin VV (2014) J Phys Chem A 118:62–69

    Article  CAS  Google Scholar 

  5. Denis PA (2013) Int J Quantum Chem 113:2206–2212

    Article  CAS  Google Scholar 

  6. Seo H-I, Bahng J-A, Kim Y-C, Kim S-J (2012) Bull Korean Chem Soc 33:3017–3024

    Article  CAS  Google Scholar 

  7. Levanov AV, Sakharov DV, Dashkova AV, Antipenko EE, Lunin VV (2011) Eur J Inorg Chem 2011(33):5144–5150

    Article  CAS  Google Scholar 

  8. Martins-Costa M, Anglada JM, Ruiz-Lopez MF (2011) Int J Quantum Chem 111:1543–1554

    Article  CAS  Google Scholar 

  9. Martins-Costa M, Anglada JM, Ruiz-Lopez MF (2009) Chem Phys Lett 481:180–182

    Article  CAS  Google Scholar 

  10. Denis PA, Ornellas FR (2009) J Phys Chem A 113:499–506

    Article  CAS  Google Scholar 

  11. Kovacic S, Koller J, Cerkovnik J, Tuttle T, Plesnicar B (2008) J Phys Chem A 112:8129–8135

    Article  CAS  Google Scholar 

  12. Plesnicar B (2005) Acta Chim Slov 52:1–12

    CAS  Google Scholar 

  13. Cerkovnik J, Erzen E, Koller J, Plesnicar B (2002) J Am Chem Soc 124:404–409

    Article  CAS  Google Scholar 

  14. McKay DJ, Wright JS (1998) J Am Chem Soc 120:1003–1013

    Article  CAS  Google Scholar 

  15. Khursan SL, Shereshovets VV (1996) Russ Chem Bull 45:1286–1291

    Article  Google Scholar 

  16. Cerkovnik J, Plesnicar B (1993) J Am Chem Soc 115:12169–12170

    Article  CAS  Google Scholar 

  17. Arnau JL, Giguere PA (1974) J Chem Phys 60:270–273

    Article  CAS  Google Scholar 

  18. Plesnicar B, Kaiser S, Azman A (1973) J Am Chem Soc 95:5476–5477

    Article  CAS  Google Scholar 

  19. Benson SW (1960) J Chem Phys 33:306–307

    Article  CAS  Google Scholar 

  20. Anglada JM, Martins-Costa M, Francisco JS, Ruiz-Lopez MF (2015) Acc Chem Res 48:575–583

    Article  CAS  Google Scholar 

  21. Anglada JM, Olivella S, Solé A (2007) J Phys Chem A 111:1695–1704

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhang T, Wang W (2011) Int J Quantum Chem 111:3029–3039

    Article  CAS  Google Scholar 

  23. Zhu RS, Lin MC (2001) PhysChemComm 4:106–111

    Article  Google Scholar 

  24. Zhou DDY, Han K, Zhang P, Harding LB, Davis MJ, Skodje RT (2012) J Phys Chem A 116:2089–2100

    Article  CAS  Google Scholar 

  25. Christensen LE, Okumura M, Sander SP, Salawitch RJ, Toon GC, Sen B, Blavier JF, Jucks KW (2002) Geophys Res Lett 29:13-1–13-4

    Article  Google Scholar 

  26. Stockwell WR (1995) J Geophys Res D 100:11695–11698

    Article  CAS  Google Scholar 

  27. Hippler H, Troe J, Willner J (1990) J Chem Phys 93:1755–1760

    Article  CAS  Google Scholar 

  28. Lightfoot PD, Veyret B, Lesclaux R (1988) Chem Phys Lett 150:120–126

    Article  CAS  Google Scholar 

  29. Takacs GA, Howard CJ (1986) J Phys Chem 90:687–690

    Article  CAS  Google Scholar 

  30. Patrick R, Barker JR, Golden DM (1984) J Phys Chem 88:128–136

    Article  CAS  Google Scholar 

  31. Takacs GA, Howard CJ (1984) J Phys Chem 88:2110–2116

    Article  CAS  Google Scholar 

  32. Sander SP (1984) J Phys Chem 88:6018–6021

    Article  CAS  Google Scholar 

  33. Patrick R, Pilling MJ (1982) Chem Phys Lett 91:343–347

    Article  CAS  Google Scholar 

  34. Sander SP, Peterson M, Watson RT, Patrick R (1982) J Phys Chem 86:1236–1240

    Article  CAS  Google Scholar 

  35. Simonaitis R, Heicklen J (1982) J Phys Chem 86:3416–3418

    Article  CAS  Google Scholar 

  36. Merenyi G, Lind J, Naumov S, von Sonntag C (2010) Chem Eur J 16:1372–1377

    Article  CAS  Google Scholar 

  37. Anglada JM, Torrent-Sucarrat M, Ruiz-Lopez MF, Martins-Costa M (2012) Chem Eur J 18:13435–13445

    Article  CAS  Google Scholar 

  38. Aloisio S, Francisco JS (2000) J Phys Chem A 104:6597

    Article  CAS  Google Scholar 

  39. Kanno N, Tonokura K, Tezaki A, Koshi M (2005) J Phys Chem A 109:3153–3158

    Article  CAS  Google Scholar 

  40. Aloisio S, Francisco JS (1998) J Phys Chem A 102:1899–1902

    Article  CAS  Google Scholar 

  41. Lendvay G (2001) Z Phys Chem 215:377–392

    Article  CAS  Google Scholar 

  42. Zhu RS, Lin MC (2002) Chem Phys Lett 354:217–226

    Article  CAS  Google Scholar 

  43. Zhu RS, Lin MC (2003) PhysChemComm 6:51–54

    Article  Google Scholar 

  44. Vácha R, Slavíček P, Mucha M, Finlayson-Pitts BJ, Jungwirth P (2004) J Phys Chem A 108:11573–11579

    Article  Google Scholar 

  45. Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-Lopez M (2012) Angew Chem Int Edit 51:5413–5417

    Article  CAS  Google Scholar 

  46. Anglada JM, Martins-Costa M, Ruiz-Lopez MF, Francisco JS (2014) Proc Natl Acad Sci USA 111:11618–11623

    Article  CAS  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  48. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  49. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 86–87

    Google Scholar 

  50. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  51. Pople JA, Krishnan R, Schlegel B, Binkley JS (1978) Int J Quantum Chem 14:545–560

    Article  CAS  Google Scholar 

  52. Cizek J (1969) Adv Chem Phys 14:35

    CAS  Google Scholar 

  53. Barlett RJ (1989) J Phys Chem 93:1963

    Article  Google Scholar 

  54. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  55. Dunning THJ (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  56. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  57. Bak KL, Gauss J, Jorgensen P, Olsen J, Helgaker T, Stanton JF (2001) J Chem Phys 114:6548–6556

    Article  CAS  Google Scholar 

  58. Graefenstein J, Kraka E, Filatov M, Cremer D (2002) Int J Mol Sci 3:360–394

    Article  CAS  Google Scholar 

  59. Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp 23:199

    CAS  Google Scholar 

  60. Rienstra-Kiracofe JC, Allen WD, Schaefer HF III (2000) J Phys Chem A 104:9823–9840

    Article  CAS  Google Scholar 

  61. Jorgensen WL, Chandrashekar J, Madura JD, Impey WR, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  62. Luque FJ, Reuter N, Cartier A, Ruiz-López MF (2000) J Phys Chem A 104:10923

    Article  CAS  Google Scholar 

  63. Torrie GM, Valleau JP (1977) J Comput Phys 23:187

    Article  Google Scholar 

  64. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13:1011

    Article  CAS  Google Scholar 

  65. Roux B (1995) Comput Phys Commun 91:275

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  67. Ponder JW (2004) TINKER: software tools for molecular design. Washington University School of Medicine, Saint Louis

    Google Scholar 

  68. Martins-Costa MTC (2014) A Gaussian 09/Tinker 4.2 interface for hybrid QM/MM applications. University of Lorraine—CNRS, Nancy

    Google Scholar 

  69. Wu A, Cremer D, Gauss J (2003) J Phys Chem A 107:8737

    Article  CAS  Google Scholar 

  70. Martins-Costa M, Anglada JM, Ruiz-López MF (2009) Chem Phys Lett 481:180

    Article  CAS  Google Scholar 

  71. Zhang TL, Wang WL, Zhang P, Lu J, Zhang Y (2011) Phys Chem Chem Phys 13:20794–20805

    Article  CAS  Google Scholar 

  72. Chalmet S, Ruiz-López MF (2006) J Chem Phys 124:194502

    Article  Google Scholar 

  73. Bielski BH, Schwarz HA (1968) J Phys Chem 72:3836–3841

    Article  CAS  Google Scholar 

  74. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JMA thanks the Spanish Secretaria de Estado de Investigación, Desarrollo e Innovación (CTQ2014-59768-P), and the Generalitat de Catalunya (Grant 2014SGR139) for financial support and the Consorci de Serveis Universitaris de Catalunya (CSUC) for providing computational resources. MTCMC and MFRL acknowledge the French CINES for providing computing time (Project Code lct2550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Ruiz-López.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins-Costa, M.T.C., Anglada, J.M. & Ruiz-López, M.F. Structure of hydrogen tetroxide in gas phase and in aqueous environments: relationship to the hydroperoxyl radical self-reaction. Struct Chem 27, 231–242 (2016). https://doi.org/10.1007/s11224-015-0717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0717-2

Keywords

Navigation