Skip to main content

Advertisement

Log in

Investigation of aggregation behavior using computational methods and absorption spectra for trisazo direct dyes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Direct dyes are likely to self-associate in aqueous solutions. Here, we present the aggregation characteristics of three trisazo direct dyes investigated using a procedure, which combines computational and experimental approaches. The geometric features of the molecules and their aggregates were elucidated by molecular modeling and optimization. The relative energies specific for the aggregation process yielded the optimum number of molecules forming an aggregate: two for AHDS dye and three for SDH and AIDS dyes. The results were further confirmed by using spectrometric determination and mathematical analysis. Accordingly, molecular aggregation was studied in aqueous solutions as a function of dye concentration (10−6–10−3 mol/l) and solution pH (4–10). As the dye concentration increased, shifts in absorption spectra were observed, suggesting the formation of aggregates. The pH variation produced a change in the spectral maximum, confirming the aggregation. The mathematical processing of the absorption spectrum data confirmed the number of chemical species of each aggregate as resulted from computational calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. El-Shishtawy RM (2009) Functional dyes, and some hi-tech applications. Int J Photoenergy. doi:10.1155/2009/434897

    Google Scholar 

  2. de Campos Ventura-Camargo B, Marin-Morales MA (2013) Azo dyes: characterization and toxicity—a review. Text Light Ind Sci Technol 2(2):85–103

    Google Scholar 

  3. Clarke EA, Anliker R (1980) Organic dyes and pigments. In: Hutzinger O (ed) Anthropogenic compounds, vol 3/3A. The handbook of environmental chemistry. Springer, Berlin, pp 181–215. doi:10.1007/978-3-540-38522-6_7

  4. Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151(1):203–210

    Article  CAS  Google Scholar 

  5. Golka K, Kopps S, Prager H-M, Mende SV, Thiel R, Jungmann O, Zumbe J, Bolt HM, Blaszkewicz M, Hengstler JG, Selinski S (2012) Bladder cancer in crack testers applying azo dye-based sprays to metal bodies. J Toxicol Environ Health Part A 75(8–10):566–571. doi:10.1080/15287394.2012.675309

    Article  CAS  Google Scholar 

  6. Simu G, Funar-Timofei S, Hora S, Kurunczi L (2004) Experimental and theoretical study of the adsorption of a trisazo direct dye derived from 4,4′-diaminobenzanilide on a cellulose substrate. Mol Cryst Liq Cryst 416(1):97–104. doi:10.1080/15421400490478236

    Article  CAS  Google Scholar 

  7. Simu GM, Hora SG, Grad ME, Sisu EN (2005) Direct dyes derived from 4,4′-diaminobenzanilide. Synthesis, physicochemical properties and colouristic evaluation of some new trisazo direct dyes. Rev Roum Chim 50(2):113–117

    CAS  Google Scholar 

  8. Clark M (2011) Handbook of textile and industrial dyeing: principles, processes and types of dyes. Woodhead Publishing, Sawston, Cambridge, UK

    Book  Google Scholar 

  9. Navarro A, Sanz F (1999) Dye aggregation in solution: study of C.I. direct red I. Dyes Pigments 40(2–3):131–139

    Article  CAS  Google Scholar 

  10. Hamlin JD, Whiting A (2005) An insight into the mechanism of the cellulose dyeing process, part 2: simulation of aggregation, solvent and additive effects upon azo-linked aromatics and dyes. Mol Simul 31(8):605–612. doi:10.1080/08927020500195384

    Article  CAS  Google Scholar 

  11. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J (1999) UV–Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta 49(1):99–106

    Article  CAS  Google Scholar 

  12. Muntean SG, Radulescu-Grad ME, Sfarloaga P (2014) Dye adsorbed on copolymer, possible specific sorbent for metal ions removal. RSC Adv 4(52):27354–27362. doi:10.1039/C4RA02918F

    Article  CAS  Google Scholar 

  13. Alberghina G, Bianchini R, Fichera M, Fisichella S (2000) Dimerization of Cibacron Blue F3GA and other dyes: influence of salts and temperature. Dyes Pigments 46(3):129–137

    Article  CAS  Google Scholar 

  14. Bird CL, Boston WS, Society of Dyers and Colourists, Worshipful Company of Dyers (London, England) (1975) The Theory of coloration of textiles. Dyers Company Publications Trust: distributed by the Society of Dyers and Colourists, Bradford

    Google Scholar 

  15. Burdett BC (1983) Aggregation of dyes. In: Studies in physical and theoretical chemistry, vol 2. Elsevier, Scientific Publishing Company, Amsterdam, Oxford, New York

  16. Kunzler J, Samha L, Zhang R, Samha H (2011) Investigation of the effect of concentration on molecular aggregation of cyanine dyes in aqueous solution. Am J Undegrad Res 9(4):1–4

    Google Scholar 

  17. Muntean SG, Grad ME, Szabadai Z (2011) Influence of the aromatic substituente on the aggregation properties of direct dyes derived from 4,4′-diaminostilbene-2,2′-disulphonic. In: The 15th international electronic conference on synthetic organic chemistry (ECSOC-15), p 639

  18. Rashidi-Alavijeh M, Javadian S, Gharibi H, Moradi M, Tehrani-Bagha AR, Shahir AA (2011) Intermolecular interactions between a dye and cationic surfactants: effects of alkyl chain, head group, and counterion. Colloids Surf A 380(1–3):119–127

    Article  CAS  Google Scholar 

  19. Alarfaj NA, El Khiate ZM, Moussa EA (2008) Spectrophotometric studies on aggregation of some acid dyes in different media. J King Abdulaziz Univ Sci 20(1):99–110

    Article  CAS  Google Scholar 

  20. Muntean SG, Simu GM, Kurunczi L, Szabadai Z (2008) Experimental and mathematical study of the aggregation of a green trisazo direct dye. Revista de Chimie (Bucuresti) 59(8):894–897

    CAS  Google Scholar 

  21. Xiang J, Yang X, Chen C, Tang Y, Yan W, Xu G (2003) Effects of NaCl on the J-aggregation of two thiacarbocyanine dyes in aqueous solutions. J Colloid Interface Sci 258(1):198–205

    Article  CAS  Google Scholar 

  22. Javadian S, Hooshmand F, Asadzadeh Shahir A (2011) Aggregation of an anionic azo dye with conventional cationic surfactants in premicellar region. Prog Color Colorants Coat 4:121–128

    Google Scholar 

  23. Goftar MK, Moradi K, Kor NM (2014) Spectroscopic studies on aggregation phenomena of dyes. Eur J Exp Biol 4(2):72–81

    CAS  Google Scholar 

  24. HyperChem(TM) Professional 7.51 H, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA

  25. Inglesby MK, Zeroniah SH, Elder TJ (2002) Aggregation of direct dyes investigated by molecular modeling. Text Res J 72(3):231–239

    Article  CAS  Google Scholar 

  26. MathSoft Inc. (1999) MUsG, Cambridge, Massachusetts, USA

  27. Pal MK, Chaudhuri M (1970) Conductometric titrations of anionic polyelectrolytes with metachromatic dyes and effects of organic solvents. Die Makromolekulare Chemie 133(1):151–160

    Article  CAS  Google Scholar 

  28. Machado C, Nascimento MdG, Rezende MC, Beezer AE (1999) Calorimetric evidence of aggregation of the ET(30) dye in alcoholic solutions. Thermochim Acta 328(1–2):155–159

    Article  CAS  Google Scholar 

  29. Duff DG, Kirkwood DJ, Stevenson DM (1977) The behaviour of dyes in aqueous solutions. I. The influence of chemical structure on dye aggregation—a polarographic study. J Soc Dyers Colour 93(8):303–306

    Article  CAS  Google Scholar 

  30. Marek PL (2013) Biomimetic dye aggregate solar cells. Springer Theses. doi:10.1007/978-3-319-00636-9

  31. Kato N (2007) X-ray analysis on the size and shape of J-aggregates formed at the air-water interface. J Phys: Conf Ser 83(1):012025

    Google Scholar 

  32. Craven B, Imamkhasani S (1980) Diffusion coefficients of two anionic dyes in dilute aqueous electrolyte solution. Aust J Chem 33(1):83–90

    Article  CAS  Google Scholar 

  33. Petrášek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94(4):1437–1448

    Article  Google Scholar 

  34. Tisserant J-N, Brönnimann R, Hany R, Jenatsch S, Nüesch FA, Mezzenga R, Bona G-L, Heier J (2014) Resonance light scattering in dye-aggregates forming in dewetting droplets. ACS Nano 8(10):10057–10065

    Article  CAS  Google Scholar 

  35. Wojtyk J, McKerrow A, Kazmaier P, Buncel E (1999) Quantitative investigations of the aggregation behaviour of hydrophobic anilino squaraine dyes through UV/vis spectroscopy and dynamic light scattering. Can J Chem 77(5–6):903–912

    Article  CAS  Google Scholar 

  36. Zhang Q, Dandeneau CS, Park K, Liu D, Zhou X, Jeong Y-H, Cao G (2010) Light scattering with oxide nanocrystallite aggregates for dye-sensitized solar cell application. NANOP 4(1):041540-041540-041523

  37. Neumann B, Huber K, Pollmann P (2000) A comparative experimental study of the aggregation of Acid Red 266 in aqueous solution by use of 19F-NMR, UV/Vis spectroscopy and static light scattering. Phys Chem Chem Phys 2(16):3687–3695

    Article  CAS  Google Scholar 

  38. Bratko D, Cerkvenik J, Span J, Vesnaver G (1983) Osmometric study of aggregation in dye solutions. Croat Chem Acta 56(4):797–801

    CAS  Google Scholar 

  39. Horowitz VR, Janowitz LA, Modic AL, Heiney PA, Collings PJ (2005) Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Phys Rev E 72(4):041710

    Article  Google Scholar 

  40. Hamada K, Mitshuishi M, Ohira M, Miyazaki K (1993) Positional effects of a trifluoromethyl group on the aggregation of azo dyes in aqueous solutions. J Phys Chem 97(19):4926–4929. doi:10.1021/j100121a010

    Article  CAS  Google Scholar 

  41. Kang J, Kaczmarek O, Liebscher J, Dähne L (2010) Prevention of H-aggregates formation in Cy5 labeled macromolecules. Int J Polym Sci 1–7

  42. Almeida VC, Costa WF, Nozaki J, Oliveira CC (2006) Spectrophotometric determination of blue procion HEGN in effluents of textile industry exploiting the dye aggregation effect and flow injection analysis. Anal Sci 22(3):445–448

    Article  CAS  Google Scholar 

  43. Zhang Y, Xiang J, Tang Y, Xu G, Yan W (2008) Aggregation behaviour of two thiacarbocyanine dyes in aqueous solution. Dyes Pigments 76(1):88–93

    Article  Google Scholar 

  44. Abbott LC, Batchelor SN, Jansen L, Oakes J, Lindsay Smith JR, Moore JN (2004) Spectroscopic studies of Direct Blue 1 in solution and on cellulose surfaces: effects of environment on a bis-azo dye. New J Chem 28(7):815–821

    Article  CAS  Google Scholar 

  45. Marmé N, Habl G, Knemeyer J-P (2005) Aggregation behavior of the red-absorbing oxazine derivative MR 121: a new method for determination of pure dimer spectra. Chem Phys Lett 408(4–6):221–225

    Article  Google Scholar 

  46. Pawlik A, Ouart A, Kirstein S, Abraham H-W, Daehne S (2003) Synthesis and UV/Vis spectra of J-aggregating 5,5′,6,6′-tetrachlorobenzimidacarbocyanine dyes for artificial light-harvesting systems and for asymmetrical generation of supramolecular helices. Eur J Org Chem 16:3065–3080

    Article  Google Scholar 

  47. Niazi A, Yazdanipour A, Ghasemi J, Kubista M (2006) Spectrophotometric and thermodynamic study on the dimerization equilibrium of ionic dyes in water by chemometrics method. Spectrochim Acta Part A Mol Biomol Spectrosc 65(1):73–78

    Article  Google Scholar 

  48. Koti ASR, Periasamy N (2002) Cyanine induced aggregation in meso-tetrakis(4-sulfonatophenyl)porphyrin anions. J Mater Chem 12(8):2312–2317

    Article  CAS  Google Scholar 

  49. Lyon JLL, Eisele D, Kirstein S, Rabe JP, Vanden Bout DA, Stevenson KJ (2009) UV-vis spectroscopy and cyclic voltammetry investigations of tubular J-aggregates of amphiphilic cyanine dyes. ECS Trans 16(28):77–84

    Article  CAS  Google Scholar 

  50. Muntean SG, Simu GM, Kurunczi L, Szabadai Z (2009) Investigation of the aggregation of three disazo direct dyes by UV–Vis spectroscopy and mathematical analysis. Revista de Chimie (Bucuresti) 60(2):152–155

    CAS  Google Scholar 

  51. Hussain S-A, Bhattacharjee D (2009) Langmuir–Blodgett films and molecular electronics. Mod Phys Lett B 23(29):3437–3451. doi:10.1142/S0217984909021508

    Article  CAS  Google Scholar 

  52. Sauer M, Hofkens J, Enderlein J (2011) Basic principles of fluorescence spectroscopy. In: Handbook of fluorescence spectroscopy and imaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–30

  53. Briegleb G (1961) Elektronen-donator-acceptor-Komplexe, vol 1. Springer, Berlin. doi:10.1007/978-3-642-86555-8

  54. Szabadai Z (2005) Bazele Fizico-Chimice ale Metodelor de Control Analitic al Medicamentelor, vol 2. doi:10.1533/9780857093974.2.515

  55. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Project 3.4 of the Institute of Chemistry Timisoara of Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Halip.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muntean, S.G., Szabadai, Z. & Halip, L. Investigation of aggregation behavior using computational methods and absorption spectra for trisazo direct dyes. Struct Chem 27, 1049–1059 (2016). https://doi.org/10.1007/s11224-015-0705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0705-6

Keywords

Navigation