Skip to main content
Log in

Theoretical research on self-assembly system of molecularly imprinted polymers formed by melamine and trifluoromethacrylic acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The long-range correction method (WB97XD) was applied to simulate the self-assembly system of the molecularly imprinted polymers via Gaussian 09 software. Melamine (MAM) was taken as the template molecule and trifluoromethacrylic acid (TFMAA) was taken as the functional monomer. The ethylene glycol dimethacrylate, divinylbenzene, pentaerythritol triacrylate, and trimethylolpropane trimethylacrylate were chosen as the cross-linking agents, respectively. The acetonitrile, methanol, dichloromethane, chloroform, toluene, ethanol, and dimethylsulfoxide were taken as solvents, respectively. The bonding situation, the geometry optimization of the different imprinting ratios, the binding energy, the molecular imprinting mechanism between MAM and TFMAA, and the influence of cross-linking agent as well as solvent have been studied. The detailed topological property was also applied to discuss the nature of the imprinting effect. The results indicate that MAM and TFMAA can form ordered compounds via hydrogen bond interaction. The melamine-molecularly imprinted polymers with a molar ratio of 1:6 have the lowest binding energy, the largest amount of hydrogen bonds, and the stable structure in toluene solvent. Divinylbenzene is the best cross-linking agent for the melamine-molecularly imprinted polymers in comparison with others. The study can provide a theoretical reference for the synthesis of the high selectivity melamine-molecularly imprinted polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li ZY, Quan HJ, Gong CB, Yang YZ, Tang Q, Wei YB, Ma XB, Lam HW (2015) Food Chem 172:56

    Article  CAS  Google Scholar 

  2. Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) Chem Soc Rev 40:1547

    Article  CAS  Google Scholar 

  3. Yan HY, Cheng XL, Sun N, Cai TY, Wu RJ, Han K (2012) J Chromatogr B 908:137

    Article  CAS  Google Scholar 

  4. Zhang YQ, Shan X, Gao XQ (2011) Sep Purif Tech 76:337

    Article  CAS  Google Scholar 

  5. Piletska EV, Burns R, Tewy LA, Piletsky SA (2012) J Agric Food Chem 60:95

    Article  CAS  Google Scholar 

  6. Saloni J, Dasary SS, Anjaneyulu Y, Yu H, Hill G Jr (2011) Struct Chem 21:1171

    Article  Google Scholar 

  7. Liu JB, Sun JN, Tang SS, Chen KY, Jin RF (2012) Chin J Struct Chem 31:1794

    CAS  Google Scholar 

  8. Gholivand MB, Karimian N, Malekzadeh GJ (2012) Talanta 89:513

    Article  CAS  Google Scholar 

  9. Liu JB, Tang SS, Sun JN, Jin RF (2013) Chem J Chin Univ 34:2566

    CAS  Google Scholar 

  10. Shariatinia Z, Erben MF, Della Védova CO, Abdous M, Azodi S (2011) Struct Chem 22:1347

    Article  CAS  Google Scholar 

  11. Sun FX, Ma W, Xu LG, Zhu YY, Liu LQ, Peng CF, Wang LB, Kuang H, Xu CL (2010) Trac Trend Anal Chem 29:1239

    Article  CAS  Google Scholar 

  12. Li J, Qi HY, Shi YP (2009) J Chromatogr A 1216:5467

    Article  CAS  Google Scholar 

  13. Pei XF, Tandon A, Alldrick A, Giorgi L, Huang W, Yang RJ (2011) Food Policy 36:412

    Article  Google Scholar 

  14. Yan N, Zhou L, Zhu ZF, Chen XG (2009) J Agric Food Chem 57:807

    Article  CAS  Google Scholar 

  15. Sun HW, Wang LX, Ai LF, Liang SX, Wu H (2010) Food Control 21:686–691

    Article  CAS  Google Scholar 

  16. Yan N, Zhou L, Zhu Z, Chen XG (2009) J Agric Food Chem 57:807

    Article  CAS  Google Scholar 

  17. Koh G, Chia RS, Lin Q, Cheow PS, Teo TL, Lee TK (2011) J Sep Sci 34:3043

    Article  CAS  Google Scholar 

  18. Yang HH, Zhou WH, Guo XC, Chen FR, Zhao HQ, Lin LM, Wang XR (2009) Talanta 80:821

    Article  CAS  Google Scholar 

  19. Liu JB, Shi Y, Sun JN, Tang SS, Hu YH, Jin RF (2013) Food Sci 34:96

    Article  Google Scholar 

  20. Liang RN, Kou LJ, Chen ZP, Qin W (2013) Sensor Actuat B Chem 188:972

    Article  CAS  Google Scholar 

  21. Wei J, Zhang TT, Jia JF, Wu HS (2015) Struct Chem 26:421

    Article  Google Scholar 

  22. Wang S, Li JX, Du YL, Cui C (2014) Comput Mater Sci 83:290

    Article  CAS  Google Scholar 

  23. Ye HL, Liu YF, Zhang XH, Di DL (2013) Struct Chem 24:1443

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baroe V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision A.2. Gaussian Inc., Pittsburgh PA

    Google Scholar 

  25. Li XM, Xing BQ, Li LX, Zhu ML (2009) J Shanxi Datong Univ Nat Sci 25:37

    CAS  Google Scholar 

  26. Boys SF, Bernadi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  27. Lu T (2012) Multifunctional wave function analyzer. Version 2:31

    Google Scholar 

  28. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  29. Jeffrey GA (2003) Cryst Rev 9:135

    Article  CAS  Google Scholar 

  30. Steiner T (2003) Cryst Rev 9:177

    Article  CAS  Google Scholar 

  31. Wang YX, Liu QM, Rong F, Fu DG (2012) Polym Adv Technol 23:720

    Article  CAS  Google Scholar 

  32. Khan MS, Pal S, Krupadam RJ (2015) J Mol Recognit 28:427

    Article  CAS  Google Scholar 

  33. Meier F, Schott B, Riedel D, Mizaikoff B (2012) Anal Chim Acta 744:68

    Article  CAS  Google Scholar 

  34. Becke AD (1988) Phy Rev A 38:3098

    Article  CAS  Google Scholar 

  35. Roas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  Google Scholar 

Download references

Acknowledgments

This research project was financially supported by the Science and Technology developmental plan (Nos. 20130206099SF, 20150101018JC), Natural Science Foundation of Jilin Province (No. 201215180) and the National Natural Science Foundation of China (No. 21302062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-bo Liu or Shan-shan Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Jb., Tang, Ss. et al. Theoretical research on self-assembly system of molecularly imprinted polymers formed by melamine and trifluoromethacrylic acid. Struct Chem 27, 897–905 (2016). https://doi.org/10.1007/s11224-015-0664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0664-y

Keywords

Navigation