Skip to main content
Log in

Experimental and theoretical study on cation–π interaction of Ag+ with [6]helicene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

By employing electrospray ionization mass spectrometry, it was proven experimentally that the [6]helicene–Ag+ complex (i.e., [Ag(C26H16)]+) exists in the gas phase. Further, applying quantum mechanical DFT calculations, the most probable structure of this cationic complex [Ag(C26H16)]+ was derived. Finally, in the solid state, the complex [6]helicene–silver triflate–monohydrate (i.e., C26H16–AgCF3SO3–H2O), crystallizing in the monoclinic system with the centro-symmetric P21/c space group, was prepared and analyzed. The characteristic feature of this complex packing in the solid state is the formation of the separated [6]helicene and silver triflate domains. In both of these binding modes, the investigated [6]helicene ligand functions as a molecular tweezer for the univalent silver cation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen Y, Chen C-F (2012) Chem Rev 112:1463

    Article  CAS  Google Scholar 

  2. Gingras M (2013) Chem Soc Rev 42:968

    Article  CAS  Google Scholar 

  3. Torricelli F, Bosson J, Besnard C, Chekini M, Bürgi T, Lacour J (2013) Angew Chem Int Ed 52:1796

    Article  CAS  Google Scholar 

  4. Nakai Y, Mori T, Inoue Y (2013) J Phys Chem A 117:83 and references therein

    Article  CAS  Google Scholar 

  5. Furche F, Ahlrichs R, Wachsmann C, Weber E, Sobanski A, Vögtle F, Grimme S (2000) J Am Chem Soc 122:1717

    Article  CAS  Google Scholar 

  6. Nakano K, Oyama H, Nishimura Y, Nakasako S, Nozaki K (2012) Angew Chem Int Ed 51:695

    Article  CAS  Google Scholar 

  7. Katz TJ, Pesti J (1982) J Am Chem Soc 104:346

    Article  CAS  Google Scholar 

  8. Sudhakar A, Katz TJ (1986) J Am Chem Soc 108:179

    Article  CAS  Google Scholar 

  9. Saini S, Deb BM (2007) Indian J Chem 46A:9

    CAS  Google Scholar 

  10. Johansson MP, Patzschke M (2009) Chem Eur J 15:13210

    Article  CAS  Google Scholar 

  11. Fuchter MJ, Schaefer J, Judge DK, Wardzinski B, Weimar M, Krossing I (2012) Dalton Trans 41:8238

    Article  CAS  Google Scholar 

  12. Xu Y, Zhang YX, Sugiyama H, Umano T, Osuga H, Tanaka K (2004) J Am Chem Soc 126:6566

    Article  CAS  Google Scholar 

  13. Wang DZG, Katz TJ (2005) J Org Chem 70:8497

    Article  CAS  Google Scholar 

  14. Takenaka N, Chen J, Captain B, Sarangthem RS, Chandrakumar A (2010) J Am Chem Soc 132:4536

    Article  CAS  Google Scholar 

  15. Sato I, Yamashima R, Kadowaki K, Yamamoto J, Shibata T, Soai K (2001) Angew Chem Int Ed 40:1096

    Article  CAS  Google Scholar 

  16. Dougherty DA (1996) Science 271:163

    Article  CAS  Google Scholar 

  17. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  18. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145

    Article  CAS  Google Scholar 

  19. Zacharias N, Dougherty DA (2002) Trends Pharm Sci 23:281

    Article  CAS  Google Scholar 

  20. Gokel GW (2003) Chem Commun 2847

  21. Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37:624

    Article  Google Scholar 

  22. Gapeev A, Yang CN, Klippenstein SJ, Dunbar RC (2000) J Phys Chem A 104:3246

    Article  CAS  Google Scholar 

  23. Tsuzuki S, Yoshida M, Uchimaru T, Mikami M (2001) J Phys Chem A 105:769

    Article  CAS  Google Scholar 

  24. Huang H, Rodgers MT (2002) J Phys Chem A 106:4277

    Article  CAS  Google Scholar 

  25. Mo Y, Subramanian G, Gao J, Ferguson DM (2002) J Am Chem Soc 124:4832

    Article  CAS  Google Scholar 

  26. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893

    Article  CAS  Google Scholar 

  27. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582

    Article  CAS  Google Scholar 

  28. Sakurai K, Mizuno T, Hiroaki H, Gohda K, Oku J, Tanaka T (2005) Angew Chem Int Ed 44:6180

    Article  CAS  Google Scholar 

  29. Farrugia L (1997) J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  30. Accelrys Software Inc, Accelrys DS Visualizer, version 17, www.accelrys.com

  31. Sheldrick GM (1997) SHELXL97 Program for crystal structure refinement from diffraction data. University of Göttingen, Göttingen

    Google Scholar 

  32. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Cryst 36:1487

    Article  CAS  Google Scholar 

  33. Stein SE (2015) Mass Spectra in NIST Chemistry WebBook, NIST Standard Reference Database, Number 69. In: Linstrom PJ and Mallard WG (eds). National Institute of Standards and Technology, Gaithersburg, MD, 20899; http://webbook.nist.gov

  34. McLafferty FW, Tureček F (1993) Interpretation of mass spectra, 4th edn. University Science Books, Mill Valley, pp 141–144

    Google Scholar 

  35. Obenland S, Schmidt W (1975) J Am Chem Soc 97:6633

    Article  CAS  Google Scholar 

  36. Lias SG (2015) Ionization Energy Evaluation in NIST Chemistry WebBook, NIST Standard Reference Database, Number 69. In: Linstrom PJ and Mallard WG (eds). National Institute of Standards and Technology, Gaithersburg, MD, 20899; http://webbook.nist.gov

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox J E, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

  40. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  41. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578

    Article  Google Scholar 

  42. Toman P, Makrlík E, Vaňura P (2012) Monatsh Chem 143:985

    Article  CAS  Google Scholar 

  43. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:919

    Article  Google Scholar 

  44. Lindeman SV, Rathore R, Kochi JK (2000) Inorg Chem 39:5707

    Article  CAS  Google Scholar 

  45. de Rango C, Tsoucaris G, Declercq JP, Germain G, Putzeys JP (1973) Cryst Struct Commun 2:189

    Google Scholar 

  46. Fuchter MJ, Weimar M, Yang X, Judge DK, White AJP (2012) Tetrahedron Lett 53:1108

    Article  CAS  Google Scholar 

  47. Munakata M, Wu LP, Kuroda-Sowa T, Maekawa M, Suenaga Y, Sugimoto K (1997) Inorg Chem 36:4903

    Article  CAS  Google Scholar 

  48. Munakata M, Wu LP, Ning GL, Kuroda-Sowa T, Maekawa M, Suenaga Y, Macao N (1999) J Am Chem Soc 121:4968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society,” by the Czech Ministry of Education, Youth, and Sports (projects MSM 6046137307 and MSM 0021620857), as well as by the Grant Agency of the Czech Republic (Projects 13-21409P and P207/10/1124). Further, we appreciate for the financial support from the Technology Agency of the Czech Republic (Grant No.: TA01010646) and the Czech Ministry of Industry and Trade (Grant No.: FR-T13/628). Finally, the authors of this study thank Prof. Stanislav Böhm from Prague for some theoretical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makrlík, E., Jaklová Dytrtová, J., Vaňura, P. et al. Experimental and theoretical study on cation–π interaction of Ag+ with [6]helicene. Struct Chem 27, 627–635 (2016). https://doi.org/10.1007/s11224-015-0595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0595-7

Keywords

Navigation