Skip to main content
Log in

Substituent effect on the proton-related phenomena and chelation behavior of hydroxypicolinic compounds: a DFT investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Comparative study on kinetics and thermodynamics of proton-related reactions of hydroxypicolinic acids has been carried out using density functional theory associated with polarizable continuum model of solvation. Mechanisms for such reactions have been established. Both 3- and 4-hydroxypicolinic acid prefer zwitterionic forms to normal forms. For 6-hydroxypicolinic acid, keto forms are highly preferred. The pK a values and UV/Vis bands predicted for some picolinic compounds agree with the experiment. 5-Hydroxypicolinate shows the highest preference for complexation with copper(II) but 6-hydroxypolinate gives rise to the most stable complex. Kinetic stability of the trans-isomer relative to the cis-isomer of the complexes has been evaluated. UV/Vis spectral data predicted for some picolinate complexes are also in agreement with the previous experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Malesev D, Kuntic V (2007) J Serb Chem Soc 72:921–939

    Article  CAS  Google Scholar 

  2. Basuki W, Hiromura M, Sakurai H (2007) J Inorg Biochem 101:692–699

    Article  CAS  Google Scholar 

  3. Haase H, Maret W (2005) Biometals 18:333–338

    Article  CAS  Google Scholar 

  4. Jansen J, Karges W, Rink L (2009) J Nutr Biochem 20:399–417

    Article  CAS  Google Scholar 

  5. Vincent JB (2001) Polyhedron 20:1–26

    Article  CAS  Google Scholar 

  6. Hepburn DD, Vincent JB (2003) J Inorg Biochem 94:86–93

    Article  CAS  Google Scholar 

  7. Barrie SA, Wright JV, Pizzorno JE, Kutter E, Barron PC (1987) Agents Actions 21:223–228

    Article  CAS  Google Scholar 

  8. Cai S, Sato K, Shimizu T, Yamabe S, Hiraki M, Sano C, Tomioka H (2006) J Antimicrob Chemother 57:85–93

    Article  CAS  Google Scholar 

  9. Narui K, Noguchi N, Saito A, Kakimi K, Motomura N, Kubo K, Takamoto S, Sasatsu M (2009) Biol Pharm Bull 32:41–44

    Article  CAS  Google Scholar 

  10. Mucci A, Varesio L, Neglia R, Colombari B, Pastorino S, Blasi E (2003) Med Microbiol Immunol 192:71–78

    CAS  Google Scholar 

  11. Shimizu T, Tomioka H (2006) Antimicrob Agents Chemother 50:3186–3188

    Article  CAS  Google Scholar 

  12. Fernandez-Pol JA, Klos DJ, Hamilton PD (2001) Anticancer Res 21:3773–3776

    CAS  Google Scholar 

  13. Allegri G, Costa CL, Ragazzi E, Steinhart H, Varesio L, Bosco M, Rapisarda A, Reffo G, Massazza S, Pastorino S, Varesio L (2003) Adv Exp Med Biol 527:55–65

    Article  Google Scholar 

  14. Anderson RA (2000) Diabetes Metab 26:22–27

    CAS  Google Scholar 

  15. Preuss HG, Echard B, Perricone NV, Bagchi D, Yasmin T, Stohs SJ (2008) J Inorg Biochem 102:1986–1990

    Article  CAS  Google Scholar 

  16. Moffett JR, Namboodiri MA (2003) Immunol Cell Biol 81:247–265

    Article  CAS  Google Scholar 

  17. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) J Neurosci 27:12884–12892

    Article  CAS  Google Scholar 

  18. Nilsson J, Degerman E, Haukka M, Lisensky GC, Garribba E, Yoshikawa Y, Sakurai H, Enyedy EA, Kiss T, Esbak H, Rehder D, Nordlander E (2009) Dalton Trans 38:7902–7911

    Article  Google Scholar 

  19. Kiss E, Kawabe K, Tamura A, Jakusch T, Sakurai H, Kiss T (2003) J Inorg Biochem 95:69–76

    Article  CAS  Google Scholar 

  20. Yoshikawa Y, Ueda E, Kawabe K, Miyake H, Sakurai H, Kojima Y (2000) Chem Lett 29:874–875

    Article  Google Scholar 

  21. Yasarawan N, Thipyapong K, Sirichai S, Ruangpornvisuti V (2013) J Mol Struct 1031:144–151

    Article  CAS  Google Scholar 

  22. Crans DC, Mahroof-Tahir M, Johnson MD, Wilkins PC, Yang L, Robbins K, Johnson A, Alfano JA (2003) Godzala Iii ME, Austin LT, Willsky GR. Inorg Chim Acta 356:365–378

    Article  CAS  Google Scholar 

  23. Sakurai H (2002) Chem Rec 2:237–248

    Article  CAS  Google Scholar 

  24. Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H (2002) Coord Chem Rev 226:187–198

    Article  CAS  Google Scholar 

  25. Sakurai H, Adachi Y (2005) Biometals 18:319–323

    Article  CAS  Google Scholar 

  26. Yoshikawa Y, Ueda E, Kawabe K, Miyake H, Takino T, Sakurai H, Kojima Y (2002) J Biol Inorg Chem 7:68–73

    Article  CAS  Google Scholar 

  27. Nakai M, Sekiguchi F, Obata M, Ohtsuki C, Adachi Y, Sakurai H, Orvig C, Rehder D, Yano S (2005) J Inorg Biochem 99:1275–1282

    Article  CAS  Google Scholar 

  28. Abdul-Ghani AS, Abu-Hijleh AL, Nahas N, Amin R (1996) Biol Trace Elem Res 54:143–151

    Article  CAS  Google Scholar 

  29. Thompson KH, Chiles J, Yuen VG, Tse J, McNeill JH, Orvig C (2004) J Inorg Biochem 98:683–690

    Article  CAS  Google Scholar 

  30. Girginova PI, Paz FAA, Nogueira HIS, Silva NJO, Amaral VS, Klinowski J, Trindade T (2005) J Mol Struct 737:221–229

    Article  CAS  Google Scholar 

  31. Kukovec BM, Vaz PD, Calhorda MJ, Popović Z (2012) Z. Polyhedron 39:66–75

    Article  CAS  Google Scholar 

  32. Jakusch T, Gajda-Schrantz K, Adachi Y, Sakurai H, Kiss T, Horváth L (2006) J Inorg Biochem 100:1521–1526

    Article  CAS  Google Scholar 

  33. Lodyga-Chruscinska E, Micera G, Garribba E (2011) Inorg Chem 50:883–899

    Article  CAS  Google Scholar 

  34. Kiss E, Petrohán K, Sanna D, Garribba E, Micera G, Kiss T (2000) Polyhedron 19:55–61

    Article  CAS  Google Scholar 

  35. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. M.J. Frisch, G.W. Trucks, H.B. Schlegel GES, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C.O. Strain, Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D. J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. González, J.A. Pople (2009). Gaussian 09 (Revision D.01), Gaussian Inc., Wallingford CT

  38. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) J Chem Phys 124:124520–124532

    Article  Google Scholar 

  39. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  40. Sun S, Chen W, Cao W, Zhang F, Song J, Tian C (2008) J Mol Struct 860:40–44

    Article  CAS  Google Scholar 

  41. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  42. Laidler KJ, King MC (1983) J Phys Chem 87:2657–2664

    Article  CAS  Google Scholar 

  43. Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM (2000) J Phys Org Chem 13:253–265

    Article  CAS  Google Scholar 

  44. Camaioni DM, Schwerdtfeger CA (2005) J Phys Chem A 109:10795–10797

    Article  CAS  Google Scholar 

  45. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  46. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  47. Alongi KS, Shields GC, Ralph AW (2010) Annu Rep Comput Chem 6:113–138

    Article  CAS  Google Scholar 

  48. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421–6427

    Article  CAS  Google Scholar 

  49. McQuarrie DA (1973) Statistical mechanics. University Science Books, Mill Valley

    Google Scholar 

  50. Lugo ML, Lubes VR (2007) J Chem Eng Data 52:1217–1222

    Article  Google Scholar 

  51. Evans RF, Herington EFG, Kynaston W (1953) Trans Faraday Soc 49:1284–1292

    Article  CAS  Google Scholar 

  52. Di Marco VB, Tapparo A, Dolmella A, Bombi GG (2004) Inorg Chim Acta 357:135–142

    Article  Google Scholar 

  53. Stephens AKW, Orvig C (1998) Inorg Chim Acta 273:47–53

    Article  CAS  Google Scholar 

  54. Szabłowicz M, Kita E (2004) Transit Metal Chem 29:762–768

    Article  Google Scholar 

  55. Distler AM, Allison J (2001) J Am Soc Mass Spectrom 12:456–462

    Article  CAS  Google Scholar 

  56. Wang Q, Yu Z, Wang Q, Li W, Gao F, Li S (2012) Inorg Chim Acta 383:230–234

    Article  CAS  Google Scholar 

  57. Yasumatsu N, Yoshikawa Y, Adachi Y, Sakurai H (2007) Bioorg Med Chem 15:4917–4922

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.Y. and K.T. are grateful to the Faculty of Science at Burapha University for partial financial support and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuttawisit Yasarawan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 26476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasarawan, N., Thipyapong, K. & Ruangpornvisuti, V. Substituent effect on the proton-related phenomena and chelation behavior of hydroxypicolinic compounds: a DFT investigation. Struct Chem 27, 505–524 (2016). https://doi.org/10.1007/s11224-015-0579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0579-7

Keywords

Navigation