Skip to main content
Log in

Theoretical analysis of the rotational barrier in ethane: cause and consequences

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

On the basis of energy decomposition analysis, the rotational energy profile of ethane is explained by using two models: rigid rotation with instantaneous geometry relaxations of the eclipsed and staggered conformations and relaxed rotation with continuous geometry relaxations. Both models can be applied to the real system. A distinction between the cause of an initial energy rise and energetic consequences of structural changes accompanying the rotation is made. It is concluded that the increased Pauli repulsion is the main cause for the initial energy rise and geometry changes. However, after the structural changes take place, the Pauli repulsion is not responsible for the higher energy of the eclipsed state. It then originates from energetic consequences of geometry changes, which include decrease in electrostatic and orbital stabilization energies, mainly due to the C–C bond lengthening, and an energy rise due to methyl groups bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The preparation energy of the staggered conformer, ΔEprep = 18.49 kcal/mol (Table 2) reflects difference in energy between two CH3 radicals in their prepared state (geometry they adopt in the staggered conformation) and their equilibrium geometry.

  2. Much smaller contribution also comes from the less favourable dispersion interactions.

References

  1. Kemp JD, Pitzer KS (1936) J Chem Phys 4:749

    Article  CAS  Google Scholar 

  2. Sovers OJ, Kern CW, Pitzer RM, Karplus M (1968) J Chem Phys 49:2592–2599

    Article  CAS  Google Scholar 

  3. Vollhardt KPC (1987) Organic chemistry. Freeman WH and Company, New York

    Google Scholar 

  4. Smith MB (1994) Organic synthesis. McGraw-Hill Inc, Singapore

    Google Scholar 

  5. Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  6. Bader RFW, Cheeseman JR, Laidig KE, Wiberg KE, Breneman C (1990) J Am Chem Soc 112:6530–6536

    Article  CAS  Google Scholar 

  7. Brunck TK, Weinhold F (1979) J Am Chem Soc 101:1700–1709

    Article  CAS  Google Scholar 

  8. Reed AE, Weinhold F (1991) Isr J Chem 31:277–285

    Article  CAS  Google Scholar 

  9. Goodman L, Gu H (1998) J Chem Phys 109:72–78

    Article  CAS  Google Scholar 

  10. Badenhoop JK, Weinhold F (1999) Int J Quantum Chem 72:269–280

    Article  CAS  Google Scholar 

  11. Goodman L, Gu H, Pophristic V (1999) J Chem Phys 110:4268–4275

    Article  CAS  Google Scholar 

  12. Goodman L, Pophristic V, Weinhold F (1999) Acc Chem Res 32:983–993

    Article  CAS  Google Scholar 

  13. Weinhold F (2001) Nature 411:539–541

    Article  CAS  Google Scholar 

  14. Pophristic V, Goodman L (2001) Nature 411:565–568

    Article  CAS  Google Scholar 

  15. Bickelhaupt FM (2003) Baerends. Angew Chem Int Ed 42:4183–4188

    Article  CAS  Google Scholar 

  16. Weinhold F (2003) Angew Chem Int Ed 42:4188–4194

    Article  CAS  Google Scholar 

  17. Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990

    Article  CAS  Google Scholar 

  18. Song L, Lin Y, Wu W, Zhang Q, Mo Y (2005) J Phys Chem A 109:2310–2316

    Article  CAS  Google Scholar 

  19. Mo Y, Gao J (2007) Acc Chem Res 40:113–119

    Article  CAS  Google Scholar 

  20. Schreiner P (2002) Angew Chem Int Ed 41:3579–3581

    Article  CAS  Google Scholar 

  21. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, part A: structure and mechanisms. Springer, LLC

    Google Scholar 

  22. Martín Pendás A, Blanco MA, Francisco E (2009) J Comput Chem 30:98–109

    Article  Google Scholar 

  23. Liu S (2007) J Chem Phys 126:244103

    Article  Google Scholar 

  24. Liu S, Govind N (2008) J Phys Chem A 112:6690–6699

    Article  CAS  Google Scholar 

  25. Liu S, Govind N, Pedersen LG (2008) J Chem Phys 129:094104

    Article  Google Scholar 

  26. Esquivel RO, Liu S, Angulo JC, Dehesa JS, Antolín J, Molina-Espíritu M (2011) J Phys Chem A 115:4406–4415

    Article  CAS  Google Scholar 

  27. Liu S (2013) J Phys Chem A 117:962–965

    Article  CAS  Google Scholar 

  28. Mo Y (2011) Wiley Interdiscip Rev: Comput Mol Sci 1:164–171

    CAS  Google Scholar 

  29. Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA, Jr. (1993) J Comput Chem 14:1347–1363; Gamess (2013-R1 version) was used in this work

  31. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  32. Morokuma K (1977) Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  33. Te Velde G, Bickelhaupt FM, Baerends EJ, Fronseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford CT

  35. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  38. England W, Gordon MS (1971) J Am Chem Soc 93:4649–4657

    Article  CAS  Google Scholar 

  39. Dunning TH Jr (1989) J Chem Phys 90:1007–1024

    Article  CAS  Google Scholar 

  40. Pitzer KS (1951) Discuss Faraday Soc 10:66–73

    Article  Google Scholar 

  41. Alabugin IV, Gilmore KM, Peterson PW (2011) Wiley Interdiscip Rev: Comput Mol Sci 1:109–141

    CAS  Google Scholar 

  42. Souza FR, Freitas MP, Rittner R (2008) J Mol Struct Theochem 863:137–140

    Article  CAS  Google Scholar 

  43. Nori-Shargh D, Boggs JE (2011) Struct Chem 22:253–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia to Grant No. 172020 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Baranac-Stojanović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranac-Stojanović, M. Theoretical analysis of the rotational barrier in ethane: cause and consequences. Struct Chem 26, 989–996 (2015). https://doi.org/10.1007/s11224-014-0557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0557-5

Keywords

Navigation