Skip to main content
Log in

Spin crossover in monoadducts of Co(Salen) with pyridine and imidazole: a quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Complexation of N,N′-ethylene- and N,N′-butylene-bis(salicylideneiminato)cobalt(II) (Co(salen)) with nitrogen-containing heterocyclic ligands (pyridine, imidazole) and investigation into the mechanism responsible for the spin crossover behavior of these complexes have been computationally studied using the DFT B3LYP*/6-311++G(d,p) method. The results of calculations of geometric characteristics and energy parameters are in good agreement with an available experimental data. An addition of a base molecule to Co(salen) has been shown to be accompanied by the narrowing of the energy gap between the high-spin and the low-spin electronic states up to the values typical for spin crossover cobalt complexes. According to the calculations, the energy barrier of spin-forbidden rearrangement of a monoadduct of N,N′-butylene-bis(salicylideneiminato) Co(II) with pyridine does not exceed of 6 kcal/mol. This finding allows one to consider the adducts of Co(salen) with nitrogen-centered ligands as the prospective spin crossover systems. The computational investigation into the spatial and electronic structure of N,N′-butylene-bis(salicylideneiminato) Co(II) dimer predicts the simultaneous existence in a crystal cell of two types of molecules with different metal spin states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds I: topics in current chemistry, vol 233. Springer, Berlin

    Google Scholar 

  2. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds II: topics in current chemistry, vol 234. Springer, Berlin

    Google Scholar 

  3. Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Oxford, Wiley

  4. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  5. Sato O, Tao J, Zhang YZ (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187

    Article  CAS  Google Scholar 

  6. Minkin VI (2008) Bistable organic, organometallic, and coordination compounds for molecular electronics and spintronics. Russ Chem Bull 57:687–717

    Article  CAS  Google Scholar 

  7. Miller JS, Min KS (2009) Oxidation leading to reduction: redox-induced electron transfer (RIET). Angew Chem Int Ed 48:262–272

    Article  CAS  Google Scholar 

  8. Kahn O (2000) Chemistry and physics of supramolecular magnetic materials. Acc Chem Res 33:647–657

    Article  CAS  Google Scholar 

  9. Miller JS, Drillon M (eds) (2001) Magnetism: molecules to materials II: molecule-based materials. Wiley-VCH, New York

    Google Scholar 

  10. Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410:789–793

    Article  CAS  Google Scholar 

  11. Jay C, Groliere F, Kahn O, Kröber J (1993) From spin transition to display and memory devices. Mol Cryst Liq Cryst 234:255–262

    Article  CAS  Google Scholar 

  12. Kröber J, Codjovi E, Kahn O, Groliere F, Jay C (1993) A spin transition system with a thermal hysteresis at room temperature. J Am Chem Soc 115:9810–9811

    Article  Google Scholar 

  13. Kahn O, Kröber J, Jay C (1992) Spin transition molecular materials for displays and data recording. Adv Mater 4:718–728

    Article  CAS  Google Scholar 

  14. Hauser A (1993) Four-wave-mixing in the Fe(II) spin-crossover system [Zn1-xFex(ptz)6](BF4)2 (ptz = 1-propyltetrazole). Chem Phys Lett 202:173–178

    Article  CAS  Google Scholar 

  15. Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290

    Article  CAS  Google Scholar 

  16. Bousseksou A, Molnár G, Real JA, Tanaka K (2007) Spin crossover and photomagnetism in dinuclear iron(II) compounds. Coord Chem Rev 251:1822–1833

    Article  CAS  Google Scholar 

  17. Hayami S, Motokawa N, Shuto A, Moriyama R, Masuhara N, Inoue K, Maeda Y (2007) Spin-crossover iron(II) compounds with liquid-crystal properties. Polyhedron 26:2375–2380

    Article  CAS  Google Scholar 

  18. Hauser A, Enachescu C, Daku ML, Vargas A, Amstutz N (2006) Low-temperature lifetimes of metastable high-spin states in spin-crossover and in low-spin iron(II) compounds: the rule and exceptions to the rule. Coord Chem Rev 250:1642–1652

    Article  CAS  Google Scholar 

  19. Gütlich P, Gaspar AB, Garcia Y, Ksenofontov V (2007) Pressure effect studies in molecular magnetism. C R Chim 10:21–36

    Article  Google Scholar 

  20. Murray KS, Sheahan RM (1976) Paramagnetic anisotropy and electronic structure of [NN′-ethylenebis-(salicylideneiminato)]cobalt(II), its pyridine adduct, and [NN′-ethylene-bis(thiosalicylideneiminato)]cobalt(II). J Chem Soc Dalton Trans 11:999–1005

    Article  Google Scholar 

  21. Kennedy BJ, Fallon GD, Gatehouse BMKC, Murray KS (1984) Spin-state differences and spin crossover in five-coordinate Lewis Base adducts of Cobalt(II) Schiff Base complexes. Structure of the high-spin (N,N′-o-phenylenebis(salicylaldiminato))cobalt(II)-2-methylimidazole adduct. Inorg Chem 23:580–588

    Article  CAS  Google Scholar 

  22. König E, Ritter G, Dengler J, Thuery P, Zarembowitch J (1989) X-ray powder diffraction at the spin-state transition in [N,N′-ethylenebis(3-carboxysalicylaldiminato)]cobalt(II) complexes. Inorg Chem 28:1757–1759

    Article  Google Scholar 

  23. Min KS, Arthur J, Shum WW, Bharathy M, Loye H-CZ, Miller JS (2009) Tristability arising from singlet-triplet and quartet spin states for dimeric CoIISalen. Inorg Chem 48:4593–4594

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  25. Reiher M, Salomon O, Hess BA (2001) Reparametrization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Acc 107:48–55

    Article  CAS  Google Scholar 

  26. Sato D, Shiota Y, Juhász G, Yoshizawa K (2010) Theoretical study of the mechanism of valence tautomerism in cobalt complexes. J Phys Chem A 114:12928–12935

    Article  CAS  Google Scholar 

  27. Starikov AG, Minkin VI, Minyaev RM, Koval VV (2010) A quantum chemical study of bis-(iminoquinonephenolate) Zn(II) complexes. J Phys Chem A 114:7780–7785

    Article  CAS  Google Scholar 

  28. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99

    Article  CAS  Google Scholar 

  29. Koval VV, Starikov AG, Minyaev RM, Minkin VI (2010) Quantum-chemical study of valence tautomerism of a cobalt complex with phenoxybenzoquinone imine. Dokl Chem 435:319–323

    Article  CAS  Google Scholar 

  30. Calligaris M, Nardin G, Randaccio L (1973) Steric effects in the reversible oxygenation of cobalt-Schiff-base-complexes. Part I. Crystal and molecular structure of the optically active and meso-forms of NN′-butylenebis(salicylideneiminato)cobalt(II). J Chem Soc, Dalton Trans 4:419–424

    Article  Google Scholar 

  31. Bresciani N, Calligaris M, Nardin G, Randaccio L (1974) Steric effects in the reversible oxygenation of cobalt-Schiff-base complexes. Part II. Crystal and molecular structure of [NN’-Butylenebis-(saIicylideneiminato)]pyridinecobaIt (II). J Chem Soc Dalton Trans 498–502

Download references

Acknowledgments

This work has been supported by the Russian Science Foundation (Grant 14-13-00573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Minkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikov, A.G., Minkin, V.I. & Starikova, A.A. Spin crossover in monoadducts of Co(Salen) with pyridine and imidazole: a quantum chemical study. Struct Chem 25, 1865–1871 (2014). https://doi.org/10.1007/s11224-014-0473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0473-8

Keywords

Navigation