Skip to main content
Log in

Quantification of the Influence of Residual Stresses on Fatigue Strength of Al-Alloy Welded Joints by Means of the Local Strain Energy Density Approach

  • Published:
Strength of Materials Aims and scope

Depending on boundary conditions, welding parameters and plate thickness, high residual tresses may arise near the weld toe of a welded joint. Compressive or tensile residual stresses significantly influence the fatigue strength of the joints in the high-cycle regime. If the weld toe is modelled as a sharp, zero-radius V-shaped notch, the residual stress fields can be expressed in terms of residual notch stress intensity factors (R–NSIFs) calculated in the elastic or elastic-plastic fields. The possibility to quantify the intensity of the residual singular stress field by means of the R–NSIFs allows the designer to estimate the influence of residual stresses on the fatigue life of welded joints. In this work, the influence of residual stresses on the fatigue resistance of Al-alloy butt-welded joints is estimated by using the local stain energy density approach. Values predicted by the proposed method show a good agreement with experimental data taken from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. F. Throop and H. S. Reemsnyder, Residual Stress Effects in Fatigue, ASTM STP 776 (1981).

  2. T. R. Gurney, Fatigue of Welded Structures, Cambridge University Press, Cambridge, UK (1979).

    Google Scholar 

  3. M. Ross, “Experiments for the determination of the influence of residual stresses on the fatigue strength of structures,” Weld. Res. BWRA, 4, No. 5, 83–93 (1950).

    Google Scholar 

  4. W. Soete and R. van Crombrugge, “A study of the fatigue strength of welded joints,” Rev. Soudure Lastijdscrift, 2 (1950).

  5. W. Soete and R. van Crombrugge, “A study of the fatigue strength of welded joints,” Rev. Soudure Lastijdscrift, 4 (1950).

  6. W. Soete and R. van Crombrugge, “A study of the fatigue strength of welded joints,” Rev. Soudure Lastijdscrift, 2 (1951).

  7. W. M. Wilson and A. B. Wilder, Fatigue Tests of Butt Welds in Structural Steel Plates, Bulletin No. 310, University of Illinois Engineering Experiment Station (1939).

  8. I. V. Kudryavstev, “The influence of internal stresses on the fatigue endurance of steel,” in: Proc. of the IMechE Conf. on Fatigue, Institution of Mechanical Engineers, London (1956), pp. 317–325.

  9. V. I. Trufyakov, “Welded joints and residual stresses,” Avtomat. Svarka, No. 5, 90–103 (1956).

  10. V. I. Trufyakov, “Welded joints and residual stresses,” Br. Weld. J., 5, No. 11, 491–498 (1958).

    Google Scholar 

  11. M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plates in extension,” J. Appl. Mech., 19, No. 4, 526–528 (1952).

    Google Scholar 

  12. P. Lazzarin and R. Tovo, “A notch intensity factor approach to the stress analysis of welds,” Fatigue Fract. Eng. Mater. Struct., 21, 1089–1103 (1998).

    Article  Google Scholar 

  13. T. Boukharouba, T. Tamine, L. Nui, et al., “The use of notch stress intensity factor as a fatigue crack initiation parameter,” Eng. Fract. Mech., 52, 503–512 (1995).

    Article  Google Scholar 

  14. Y. Verreman and B. Nie, “Early development of fatigue cracking at manual fillet welds,” Fatigue Fract. Eng. Mater. Struct., 19, 669–681 (1996).

    Article  Google Scholar 

  15. B. Atzori, P. Lazzarin, and R. Tovo, “From a local stress approach to fracture mechanics: a comprehensive evaluation of the fatigue strength of welded joints,” Fatigue Fract. Eng. Mater. Struct., 22, 369–381 (1999).

    Article  Google Scholar 

  16. P. Lazzarin and P. Livieri, “Notch stress intensity factors and fatigue strength of aluminium and steel welded joints,” Int. J. Fatigue, 23, 225–232 (2001).

    Article  Google Scholar 

  17. P. Livieri and P Lazzarin, “Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values,” Int. J. Fract., 133, 247–276 (2005).

    Article  Google Scholar 

  18. D. Radaj, “State-of-the-art review on extended stress intensity factor concepts,” Fatigue Fract. Eng. Mater. Struct., 37, 1–28 (2014).

    Article  Google Scholar 

  19. P. Ferro, F. Berto, and P. Lazzarin, “Generalized stress intensity factors due to steady and transient thermal loads with applications to welded joints,” Fatigue Fract. Eng. Mater. Struct., 29, 440–453 (2006).

    Article  Google Scholar 

  20. A. Anca, A. Cardona, J. Risso, and V. D. Fachinotti, “Finite element modeling of welding processes,” Appl. Math. Model., 35, 688–707 (2011).

    Article  Google Scholar 

  21. P. Ferro, F. Bonollo, and A. Tiziani, “Methodologies and experimental validations of welding process numerical simulation,” Int. J. Comput. Mater. Sci. Surf. Eng., 3, 114–132 (2010).

    Google Scholar 

  22. P. Ferro, H. Porzner, A. Tiziani, and F. Bonollo, “The influence of phase transformation on residual stresses induced by the welding process – 3D and 2D numerical models,” Model. Simul. Mater. Sci. Eng., 14, 117–136 (2006).

    Article  Google Scholar 

  23. P. Ferro and N. Petrone, “Asymptotic thermal and residual stress distribution due to transient thermal loads,” Fatigue Fract. Eng. Mater. Struct., 32, 936–948 (2009).

    Article  Google Scholar 

  24. P. Ferro, “Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip,” Model. Simul. Mater. Sci. Eng., 20, 085003 (2012), doi:10.1088/0965-0393/20/8/085003.

    Article  Google Scholar 

  25. D. Frank, J. Romanoff, and H. Remes, “Fatigue strength assessment of laser stake-welded web-core steel sandwich panels,” Fatigue Fract. Eng. Mater. Struct., 36, 724–737 (2013).

    Article  Google Scholar 

  26. P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fract., 112, 275–298 (2001).

    Article  Google Scholar 

  27. P. Ferro, “The local strain energy density approach applied to pre-stressed components subject to cyclic load,” Fatigue Fract. Eng. Mater. Struct., 37, 1268–1280 (2014).

    Article  Google Scholar 

  28. L. Bertini, V. Fontanari and G. Straffellini, “Influence of post weld treatments on fatigue behaviour of Al-alloy welded joints,” Int. J. Fatigue, 20, 749–755 (1998).

    Article  Google Scholar 

  29. R. Gross and A. Mendelson, “Plane elastoplastic analysis of V-notched plates,” Int. J. Fract. Mech., 8, 267–276 (1972).

    Article  Google Scholar 

  30. F. Berto and P. Lazzarin, “A review of the volume-based strain energy density approach applied to V-notches and welded structures,” Theor. Appl. Fract. Mech., 52, 183–194 (2009).

    Article  Google Scholar 

  31. F. Berto and P. Lazzarin, “Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume,” Int. J. Fatigue, 33, 1055–1065 (2011).

    Article  Google Scholar 

  32. F. Berto, P. Lazzarin, and C. Marangon, “Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading,” Mater. Des., 54, 57–66 (2014).

    Article  Google Scholar 

  33. F. Berto, A. Campagnolo, and P. Lazzarin, “Fatigue strength of severely notched specimens made of Ti–6Al–4V under multiaxial loading,” Fatigue Fract. Eng. Mater. Struct., 38, 503–517 (2015), doi:10.1111/ffe.12272.

    Article  Google Scholar 

  34. F. Berto, P. Gallo, and P. Lazzarin, “High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel,” Mater. Des., 63, 609–619 (2014).

    Article  Google Scholar 

  35. F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R Reports, 75, 1–48 (2014).

    Article  Google Scholar 

  36. P. Lazzarin, A. Campagnolo, and F. Berto, “A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under Mode I loading,” Theor. Appl. Fract. Mech., 71, 21–30 (2014).

    Article  Google Scholar 

  37. X. K. Zhu and Y. J. Chao, “Effects of temperature-dependent material properties on welding simulation,” Comput. Struct., 80, 967–976 (2002).

    Article  Google Scholar 

  38. A. Barroso, J. Canas, R. Picon, et al., “Prediction of welding residual stresses and displacements by simplified models. Experimental validation,” Mater. Des., 31, 1338– 1349 (2010).

    Article  Google Scholar 

  39. A. Bhatti Ayjwat, Z. Barsoun, H. Murakawa, and I. Barsoum, “Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion,” Mater. Des., 65, 878–889 (2015).

    Article  Google Scholar 

  40. W. A. Monteiro (Ed.), Light Metal Alloys Applications, Ch. 2: R. R. Ambriz and D. Jaramillo, Mechanical Behavior of Precipitation Hardened Aluminum Alloys Welds, InTech (2014), ISBN: 978-953-51-1588-5, doi:10.5772/58418.

  41. Ø. Grong, Metallurgical Modelling of Welding, 2nd edn, Cambridge University Press, Cambridge, UK (1997).

    Google Scholar 

  42. D. H. B. Mok and R. J. Pick, “Finite element study of residual stresses in a plate T-joint fatigue specimen,” Int. J. Fatigue, 13, 281–291 (1991).

    Google Scholar 

  43. S. Sarkani, V. Tritchkov, and G. Michaelov, “An efficient approach for computing residual stresses in welded joints,” Finite Elem. Anal. Des., 35, 247–268 (2000).

    Article  Google Scholar 

  44. T. L. Teng, C. P. Fung, P. H. Chang, and W. C. Yang, “Analysis of residual stresses and distortions in T-joint fillet welds,” Int. J. Press. Vess. Piping, 78, 523–538 (2001).

    Article  Google Scholar 

  45. J. Goldak, A. Chakravarti, and M. Birbby, “A new finite element model for welding heat sources,” Metall. Trans. B, 15, 299–305 (1984).

    Article  Google Scholar 

  46. L. P. Pook, “A 50-year retrospective review of three-dimensional effects at cracks and sharp notches,” Fatigue Fract. Eng. Mater. Struct., 36, 699–723 (2013).

    Article  Google Scholar 

  47. P. Lazzarin, M. Zappalorto, and F. Berto, “Three-dimensional stress fields due to notches in plates under linear elastic and elastic–plastic conditions,” Fatigue Fract. Eng. Mater. Struct., 38, 140–153 (2013), doi:10.1111/ffe.12138.

    Article  Google Scholar 

  48. G. Mi, X. Zhan, Y. Wei, et al., “A thermal-metallurgical model of laser beam welding simulation for carbon steels,” Model. Simul. Mater. Sci. Eng., 23, 035010 (2015), doi:10.1088/0965-0393/23/3/035010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Berto.

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 107 – 119, May – June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferro, P., Berto, F. Quantification of the Influence of Residual Stresses on Fatigue Strength of Al-Alloy Welded Joints by Means of the Local Strain Energy Density Approach. Strength Mater 48, 426–436 (2016). https://doi.org/10.1007/s11223-016-9781-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-016-9781-0

Keywords

Navigation