Skip to main content
Log in

Robust Bayesian synthetic likelihood via a semi-parametric approach

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Bayesian synthetic likelihood (BSL) is now a well-established method for performing approximate Bayesian parameter estimation for simulation-based models that do not possess a tractable likelihood function. BSL approximates an intractable likelihood function of a carefully chosen summary statistic at a parameter value with a multivariate normal distribution. The mean and covariance matrix of this normal distribution are estimated from independent simulations of the model. Due to the parametric assumption implicit in BSL, it can be preferred to its nonparametric competitor, approximate Bayesian computation, in certain applications where a high-dimensional summary statistic is of interest. However, despite several successful applications of BSL, its widespread use in scientific fields may be hindered by the strong normality assumption. In this paper, we develop a semi-parametric approach to relax this assumption to an extent and maintain the computational advantages of BSL without any additional tuning. We test our new method, semiBSL, on several challenging examples involving simulated and real data and demonstrate that semiBSL can be significantly more robust than BSL and another approach in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, Z., South, L.F., Nott, D.J., Drovandi, C.C.: Accelerating Bayesian synthetic likelihood with the graphical lasso. J. Comput. Graph. Stat. 28(2), 471–475 (2019). https://doi.org/10.1080/10618600.2018.1537928

    Article  MathSciNet  Google Scholar 

  • Anderson, C., Coles, S.: The largest inclusions in a piece of steel. Extremes 5(3), 237–252 (2002)

    Article  MathSciNet  Google Scholar 

  • Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37(2), 697–725 (2009)

    Article  MathSciNet  Google Scholar 

  • Barbu, C.M., Sethuraman, K., Billig, E.M.W., Levy, M.Z.: Two-scale dispersal estimation for biological invasions via synthetic likelihood. Ecography 41(4), 661–672 (2017)

    Article  Google Scholar 

  • Bedford, T., Cooke, R.M.: Vines-a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)

    Article  MathSciNet  Google Scholar 

  • Blum, M.G.B., François, O.: Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20(1), 63–73 (2010)

    Article  MathSciNet  Google Scholar 

  • Bortot, P., Coles, S.G., Sisson, S.A.: Inference for stereological extremes. J. Am. Stat. Assoc. 102(477), 84–92 (2007)

    Article  MathSciNet  Google Scholar 

  • Boudt, K., Cornelissen, J., Croux, C.: The Gaussian rank correlation estimator: robustness properties. Stat. Comput. 22(2), 471–483 (2012)

    Article  MathSciNet  Google Scholar 

  • Chambers, J.M., Mallows, C.L., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340–344 (1976)

    Article  MathSciNet  Google Scholar 

  • Chiachio, M., Beck, J., Chiachio, J., Rus, G.: Approximate Bayesian computation by subset simulation. SIAM J. Sci. Comput. 36(3), A1339–A1358 (2014)

    Article  MathSciNet  Google Scholar 

  • Drovandi, C.C., Pettitt, A.N., Faddy, M.J.: Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Ser. C (Appl. Stat.) 60(3), 317–337 (2011)

    Article  MathSciNet  Google Scholar 

  • Drovandi, C.C., Pettitt, A.N., Lee, A.: Bayesian indirect inference using a parametric auxiliary model. Stat. Sci. 30(1), 72–95 (2015)

    Article  MathSciNet  Google Scholar 

  • Dutta, R., Corander, J., Kaski, S., Gutmann, M.U.: Likelihood-free inference by ratio estimation. ArXiv preprint arXiv:1611.10242v3 (2017)

  • Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14(1), 153–158 (1969)

    Article  MathSciNet  Google Scholar 

  • Everitt, RG.: Bootstrapped synthetic likelihood. ArXiv preprint arXiv:1711.05825v2 (2017)

  • Fasiolo, M., Wood, S.N., Hartig, F., Bravington, M.V.: An extended empirical saddlepoint approximation for intractable likelihoods. Electron. J. Stat. 12(1), 1544–1578 (2018). https://doi.org/10.1214/18-EJS1433

    Article  MathSciNet  MATH  Google Scholar 

  • Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 74(3), 419–474 (2012)

    Article  MathSciNet  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  • Gleim, A., Pigorsch, C.: Approximate Bayesian computation with indirect summary statistics. Draft paper: http://www.ect-pigorschmeeuni-bonnde/data/research/papers (2013)

  • Jones, M.C., Pewsey, A.: Sinh-arcsinh distributions. Biometrika 96(4), 761–780 (2009). https://doi.org/10.1093/biomet/asp053

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., Nott, D., Fan, Y., Sisson, S.: Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model. Comput. Stat. Data Anal. 106, 77–89 (2017)

    Article  MathSciNet  Google Scholar 

  • Liu, H., Lafferty, J., Wasserman, L.: The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J. Mach. Learn. Res. 10, 2295–2328 (2009)

    MathSciNet  MATH  Google Scholar 

  • Marchand, P., Boenke, M., Green, D.M.: A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a population of Fowler’s toads (Anaxyrus fowleri). Ecol. Model. 360, 63–69 (2017)

    Article  Google Scholar 

  • Ong, V.M.H., Nott, D.J., Tran, M.N., Sisson, S.A., Drovandi, C.C.: Likelihood-free inference in high dimensions with synthetic likelihood. Comput. Stat. Data Anal. 128, 271–291 (2018a)

    Article  MathSciNet  Google Scholar 

  • Ong, V.M.H., Nott, D.J., Tran, M.N., Sisson, S.A., Drovandi, C.C.: Variational Bayes with synthetic likelihood. Stat. Comput. 28(4), 971–988 (2018b)

    Article  MathSciNet  Google Scholar 

  • Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  • Price, L.F., Drovandi, C.C., Lee, A., Nott, D.J.: Bayesian synthetic likelihood. J. Comput. Graph. Stat. 27, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  • Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)

    Article  MathSciNet  Google Scholar 

  • Sahu, S.K., Dey, D.K., Branco, M.D.: A new class of multivariate skew distributions with applications to Bayesian regression models. Can. J. Stat. 31(2), 129–150 (2008)

    Article  MathSciNet  Google Scholar 

  • Shestopaloff, AY., Neal, RM.: On Bayesian inference for the M/G/1 queue with efficient MCMC sampling. ArXiv preprint arXiv:1401.5548 (2014)

  • Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Routledge, Abingdon (2018)

    Book  Google Scholar 

  • Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Computation, 1st edn. Chapman and Hall/CRC, Boca Raton (2018)

    Book  Google Scholar 

  • Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Inst. Stat. Univ. Paris 8, 229–231 (1959)

    MATH  Google Scholar 

  • Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992)

    Article  MathSciNet  Google Scholar 

  • Warton, D.I.: Penalized normal likelihood and ridge regularization of correlation and covariance matrices. J. Am. Stat. Assoc. 103(481), 340–349 (2008)

    Article  MathSciNet  Google Scholar 

  • Wood, S.N.: Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466, 1102–1107 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

CD was supported by an Australian Research Council’s Discovery Early Career Researcher Award funding scheme (DE160100741). ZA was supported by a scholarship under CDs Grant DE160100741 and a top-up scholarship from the Australian Research Council Centre of Excellence for Mathematical and Statistics Frontiers (ACEMS). DJN was supported by a Singapore Ministry of Education Academic Research Fund Tier 1 Grant (R-155-000-189-114). Computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia. The authors thank Alex Shestopaloff for sharing his code on exact MCMC for the M/G/1 model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwen An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2555 KB)

Supplementary material 2 (zip 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Nott, D.J. & Drovandi, C. Robust Bayesian synthetic likelihood via a semi-parametric approach. Stat Comput 30, 543–557 (2020). https://doi.org/10.1007/s11222-019-09904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-019-09904-x

Keywords

Navigation