Skip to main content
Log in

Rhodamine-Based Fluorescent Nanogel: A Dual Temperature and pH Sensor

  • Research
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

We have prepared a pH and thermosensitive, fluorescent nanogel based on sodium alginate and itaconic acid as pH-sensitive moieties, diethylene glycol methyl ether acrylate as thermosensitive monomer and rhodamine B monomer as pH-sensitive fluorescent dye. The nanogel was characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Also, scanning electron microscope (SEM) images were taken and indicated the relative uniform spherical particles with average diameter 250–300 nm. By enhancing the fluorescence emission at 576 nm, we confirmed that the pH sensitive property of the nanogel was more effective than that of the bare rhodamin B. Moreover, the nanogel including the diethylene glycol methyl ether acrylate exhibited changes in fluorescence intensity induced by temperature. By heating the nanogel dispersion to 40 °C, at acidic pH the rhodamine emission showed a considerable increase. This result indicated the occurrence of an efficient fluorescence resonance energy transfer (FRET) process between fluorescence dye and polymeric nanogel in collapsed state. Also, the thermo-responsibility of the nanogel was studied by dynamic light scattering (DLS) analysis which indicated the change in hydrodynamic diameter by changing the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Sch. 1
Sch. 2
Sch. 3
Sch. 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data and materials are available in this article.

References

  1. Zhang, J., Zhang, M., Tang, K., & Verpoort, F., T Sun (2014). Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small (Weinheim An Der Bergstrasse, Germany), 10(1), 32–46.

    Article  Google Scholar 

  2. Chen, H., Ma, X., Wu, S., & Tian, H. (2014). A rapidly self-healing supramolecular polymer hydrogel with photo stimulated room-temperature phosphorescence responsiveness. Angewandte Chemie Int Ed, 53, 1–5.

    Article  Google Scholar 

  3. Yao, Y., Wang, Y., Li, Z., & Li, H. (2015). Reversible on-off luminescence switching in self-healable hydrogels. Stimuli-responsive photonic polymer coatings. Langmuir, 31(46), 12736–12741.

    Article  Google Scholar 

  4. Stumpel, J. E., Broer, D. J., & Schenning, A. P. (2014). Stimuli-responsive photonic polymer coatings. Chem Comm, 50, 15839–15848.

    Article  Google Scholar 

  5. Cuggino, J. C., Strumia, M. C., Welker, P., Licha, K., Licha, K., Steinhilber, D., Mutihac, R. C., & Calderon, M. (2011). Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter, 7(23), 11259–11266.

    Article  Google Scholar 

  6. Zhang, Q. M., Wang, W., Su, Y. Q., & Hensen, E. J. M. (2015). Serpe MJ Biological imaging and sensing with multiresponsive microgels. Chemistry of Materials, 28, 259–265.

    Article  Google Scholar 

  7. Sigolaeva, L. V., Gladyr, S. Y., Gelissen, A. P. H., Mergel, O., Pergushov, D. V., Kurochkin, I. N., Plamper, F. A., & Richtering, W. (2014). Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor. Biomacromolecules, 15, 3735–3745.

    Article  Google Scholar 

  8. Zhou, L., & Zhang, F. (2011). Thermo-sensitive and photoluminescent hydrogels: Synthesis, characterization, and their drug-release property. Mater Sci Eng: C, 31, 1429–1435.

    Article  Google Scholar 

  9. Li, C., Zhang, Y., Hu, J., Cheng, J., & Liu, S. (2010). Reversible three-state switching of multicolor fluorescence emission by multiple stimuli modulated FRET processes within thermoresponsive polymeric micelles. Angewandte Chemie Int Ed, 49, 5120–5124.

    Article  Google Scholar 

  10. Shiraishi, Y., Miyamoto, R., Zhang, X., & Hirai, T. (2007). Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range. Org lett, 9(20), 3921–3924.

    Article  Google Scholar 

  11. Kim, Y., Kim, D., Jang, G., Kim, J., & Lee, T. S. (2015). Stimuli-responsive, crosslinked PNIPAM-based microgel. Sens Actuators B Chem, 207, 623–630.

    Article  Google Scholar 

  12. Yin, J., Hu, H., Wu, Y., & Liu, S. (2010). Thermo- and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels. Polymer Chemistry, 2, 363–371.

    Article  Google Scholar 

  13. Okada, K., & Maeda, Y. (2013). Thermochromic microgels and core-shell microgels based on fluorescence resonance energy transfer. Journal of Applied Polymer Science, 130(1), 201–205.

    Article  Google Scholar 

  14. Fan, X., Teng, C. P., Yeo, J. C. C., Li, Z., Wang, T., Chen, H., Jiang, L., Hou, X., He, C., & Liu, J. (2021). Temperature and pH responsive light-harvesting system based on AIE-active microgel for cell imaging. Macromolecular Rapid Communications, 42(7), 2000716.

    Article  Google Scholar 

  15. Wang, L., Wang, J., Wang, Y., & Zhang, X. (2022). Rhodamine-containing double-network hydrogels for smart window materials with tunable light transmittance, low-temperature warning, and deformation sensing. Reactive & Functional Polymers, 181, 105408.

    Article  Google Scholar 

  16. Belko, N., Maltanava, H., Lugovski, A., Ferreira, A. S., Correia, R. F. H., Shabunya, S., Fatykhava, P., Tabolich, S., Kulahava, A., Bahdanava, T., Ferreira, A., Tedim, M., Poznyak, J., & Samtsov, S. M (2023). pH-Sensitive fluorescent sensor for Fe (III) and Cu (II) ions based on rhodamine B acylhydrazone: Sensing mechanism and bioimaging in living cells. Microchemical Journal, 191, 108744.

    Article  Google Scholar 

  17. Wang, L., Zhou, Q., & Yang, H. (2022). A facile fabrication of lysosome-targeting pH fluorescent nanosensor based on PEGylated polyester block copolymer. Polymers, 14(12), 2420.

    Article  Google Scholar 

  18. Ye, W., Zhu, L., Xia, S., & Zhang, X. (2018). Dual pH-/temperature-responsive and fluorescent hydrogel for controlled drug delivery. Journal of Polymer Engineering, 38(4), 371–379.

    Article  Google Scholar 

  19. Zhao, D., Ma, W., Wang, R., Yang, X., Li, J., Qiu, T., & Xiao, X. (2018). Bilayer-type fluorescence hydrogels with intelligent response serve as temperature/pH driven soft actuators. Sens. Actuators B Chem, 255(3), 3117–3126.

    Google Scholar 

  20. Rui, Z., & Jiagen, W. (2020). Smart thermometer style sensor with volume readout and visualization for pH detection. Arabian Journal of Chemistry, 13(12), 8524–8531.

    Article  Google Scholar 

  21. Zhao, Y., Shi, C., Yang, X., Shen, B., Sun, Y., Chen, Y., Xu, X., Sun, H., Yu, K., Yang, B., & Lin, Q. (2016). pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. Acs Nano, 10, 5856–5863.

    Article  Google Scholar 

  22. Lee, E. M., Gwona, S. Y., Ji, B. C., & HoonKim, S. (2011). Multi-responsive poly(N-isopropylacrylamide) hydrogel with D-π-A type dye. Journal of Luminescence, 131, 2004–2009.

    Article  Google Scholar 

  23. Xu, X., Song, J., Wang, K., Gu, Y. C., Luo, F., Tang, X. H., Xie, P., & Qian, Z. Y. (2012). Synthesis and characterization of pH and temperature sensitive hydrogel based on poly(N-isopropylacrylamide), poly(ε-caprolactone), methylacrylic acid, and methoxyl poly(ethylene glycol). Macromolecular Research, 21(8), 870–877.

    Article  Google Scholar 

  24. Xiao, Y., Pandey, K., Nicolás-Boluda, A., Onidas, D., Nizard, P., Carn, F., Lucas, T., Gateau, J., Martin-Molina, A., Quesada-Pérez, M., Ramos-Tejada, M., Gazeau, F., Luo, Y., & Mangeney, C. (2022). Synergic thermo- and pH-sensitive hybrid microgels loaded with fluorescent dyes and ultrasmall gold nanoparticles for photoacoustic imaging and photothermal therapy. Acs Applied Materials & Interfaces, 14(49), 54439–54457.

    Article  Google Scholar 

  25. Vancoillie, G., Frank, D., & Hoogenboom, R. (2014). Thermoresponsive poly(oligo ethylene glycol acrylates). Progress in Polymer Science, 39(6), 1074–1095.

    Article  Google Scholar 

  26. Hu, J., Li, C., & Liu, S. (2010) Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance Langmuir 26(2) 724-729 10.1021/la9024102

  27. Praphakar, R. A., Munusamy, M. A., Alarfaj, A. A., Kumar, S. S. & Rajan M. (2017) Zn 2+ cross-linked sodium alginate-g-allylamine-mannose polymeric carrier of rifampicin for macrophage targeting tuberculosis nanotherapy New Journal of Chemistry 41(19) 11324-11334 10.1039/C7NJ01808H

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.P. was involved in planning and supervised the work. Z.M.T. contributed to the design, data analysis and writing the manuscript. Material preparation and data collection were performed by R.H. and Z.M. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ali Pourjavadi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourjavadi, A., Mazaheri Tehrani, Z., Heydarpour, R. et al. Rhodamine-Based Fluorescent Nanogel: A Dual Temperature and pH Sensor. Sens Imaging 24, 37 (2023). https://doi.org/10.1007/s11220-023-00442-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-023-00442-5

Keywords

Navigation