Skip to main content
Log in

Stokes Inversion Techniques with Neural Networks: Analysis of Uncertainty in Parameter Estimation

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Magnetic fields are responsible for a multitude of solar phenomena, including potentially destructive events such as solar flares and coronal mass ejections, with the number of such events rising as we approach the peak of the 11-year solar cycle in approximately 2025. High-precision spectropolarimetric observations are necessary to understand the variability of the Sun. The field of quantitative inference of magnetic field vectors and related solar atmospheric parameters from such observations has been investigated for a long time. In recent years, very sophisticated codes for spectropolarimetric observations have been developed. Over the past two decades, neural networks have been shown to be a fast and accurate alternative to classic inversion methods. However, most of these codes can be used to obtain point estimates of the parameters, so ambiguities, degeneracies, and uncertainties of each parameter remain uncovered. In this paper, we provide end-to-end inversion codes based on the simple Milne-Eddington model of the stellar atmosphere and deep neural networks to both parameter estimation and their uncertainty intervals. The proposed framework is designed in such a way that it can be expanded and adapted to other atmospheric models or combinations of them. Additional information can also be incorporated directly into the model. It is demonstrated that the proposed architecture provides high accuracy results, including a reliable uncertainty estimation, even in the multidimensional case. The models are tested using simulations and real data samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

In the current study, we used a collection of the Level 1 calibrated Stokes spectra (comprised by images stored in FITS format) and a collection of the Level 2 data sets (obtained from the MERLIN spectral line inversion of the Level 1 calibrated spectra) produced by the Spectropolarimeter (SP) on board the Hinode, since its launch in 2006 (collected in the Community Spectropolarimetric Analysis Center (CSAC) at HAO/NCAR). Hinode is a Japanese mission, developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). The Hinode has an open data policy, allowing anyone to access the data and data products. Level 1 and 2 data are available by following the data link.

References

  • Baso, C.J.D., Ramos, A.A., de la Cruz Rodríguez, J.: 2022, Bayesian Stokes inversion with normalizing flows. Astron. Astrophys. 659, A165. DOI.

    Article  Google Scholar 

  • Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: 2015, Weight uncertainty in neural networks. J. Mach. Learn. Res.. DOI.

    Article  Google Scholar 

  • Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., et al.: 2011, VFISV: very fast inversion of the Stokes vector for the helioseismic and magnetic imager. Solar Phys. 273(1), 267. DOI.

    Article  ADS  Google Scholar 

  • Carroll, T., Kopf, M., Strassmeier, K.: 2008, A fast method for Stokes profile synthesis. Astron. Astrophys. 488(2), 781. DOI.

    Article  ADS  Google Scholar 

  • Carroll, T.A., Staude, J.: 2001, The inversion of Stokes profiles with artificial neural networks. Astron. Astrophys. 378, 316. DOI.

    Article  ADS  Google Scholar 

  • Dalda, A.S., de la Cruz Rodríguez, J., Pontieu, B.D., Gošić, M.: 2019, Recovering thermodynamics from spectral profiles observed by IRIS: a machine and deep learning approach. Astrophys. J. Lett. 875(2), L18. DOI.

    Article  ADS  Google Scholar 

  • del Toro Iniesta Carlos, J., Ruiz Cobo, B.: 2016, Inversion of the radiative transfer equation for polarized light. Living Rev. Solar Phys. 13(1), 4. DOI.

    Article  ADS  Google Scholar 

  • Gafeira, R., Suárez, D.O., Milić, I., Noda, C.Q., Cobo, B.R., Uitenbroek, H.: 2021, Machine learning initialization to accelerate Stokes profile inversions. Astron. Astrophys. 651, A31. DOI.

    Article  Google Scholar 

  • Gawlikowski, J., Cedrique Rovile, N.T., Ali, M., Lee, J., Humt, M., Feng, J., et al.: 2021, A survey of uncertainty in deep neural networks. Preprint. arXiv. DOI.

  • Ghahramani, Z.: 2015, Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452. DOI.

    Article  ADS  Google Scholar 

  • Guo, J., Bai, X., Liu, H., Yang, X., Deng, Y., Lin, J., et al.: 2021, A nonlinear solar magnetic field calibration method for the filter-based magnetograph by the residual network. Astron. Astrophys. 646, A41. DOI.

    Article  ADS  Google Scholar 

  • Higgins, R.E.L., Fouhey, D.F., Zhang, D., Antiochos, S.K., Barnes, G., Todd, H.J., et al.: 2021, Fast and accurate emulation of the SDO/HMI Stokes inversion with uncertainty quantification. Astrophys. J. 911(2), 130. DOI.

    Article  ADS  Google Scholar 

  • Higgins, R.E.L., Fouhey, D.F., Antiochos, S.K., Barnes, G., Cheung, M.C.M., Todd, H.J., et al.: 2022, SynthIA: a synthetic inversion approximation for the Stokes vector fusing SDO and hinode into a virtual observatory. Astrophys. J. Suppl. 259(1), 24. DOI.

    Article  ADS  Google Scholar 

  • Jiang, H., Li, Q., Xu, Y., Hsu, W., Ahn, K., Cao, W., Wang, J.T.L., Wang, H.: 2022, Inferring line-of-sight velocities and Doppler widths from Stokes profiles of gst/niris using stacked deep neural networks. Astrophys. J. 939(2), 66. DOI.

    Article  ADS  Google Scholar 

  • Knyazeva, I., Plotnikov, A., Medvedeva, T., Makarenko, N.: 2022, Multi-output deep learning framework for solar atmospheric parameters inferring from Stokes profiles. In: Advances in Neural Computation, Machine Learning, and Cognitive Research V 1008, Springer, Cham, 299. DOI.

    Chapter  Google Scholar 

  • Kostenetskiy, P.S., Chulkevich, R.A., Kozyrev, V.I.: 2021, HPC resources of the higher school of economics. J. Phys. Conf. Ser. 1740(1), 012050. DOI.

    Article  Google Scholar 

  • Krzywinski, M., Altman, N.: 2013, Power and sample size. Nat. Methods 10(12), 1139. DOI.

    Article  Google Scholar 

  • Kuckein, C., Balthasar, H., Noda, C.Q., Diercke, A., Arjona, J.C.T., Cobo, B.R., et al.: 2021, Multiple Stokes I inversions for inferring magnetic fields in the spectral range around Cr I 5782 Å. Astron. Astrophys. 653, A165. DOI.

    Article  Google Scholar 

  • Kuleshov, V., Fenner, N., Ermon, S.: 2018, Accurate uncertainties for deep learning using calibrated regression. DOI.

  • Lakshminarayanan, B., Pritzel, A., Blundell, C.: 2017, Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, MIT Press, Cambridge, 6405. DOI.

    Chapter  Google Scholar 

  • Landi Degl’Innocenti, E., Landolfi, M.: 2004, Polarization in Spectral Lines, Springer, Dordrecht. DOI.

    Book  Google Scholar 

  • Leka, K.D., Wagner, E.L., Griñón-Marín, A.B., Bommier, V., Higgins, R.E.L.: 2022, On identifying and mitigating bias in inferred measurements for solar vector magnetic field data. Solar Phys. 297, 121. DOI.

    Article  ADS  Google Scholar 

  • Li, H., Xu, Z., Qu, Z., Sun, L.: 2019, MCMC inversion of Stokes profiles. Astrophys. J. 875(2), 127. DOI.

    Article  ADS  Google Scholar 

  • Li, H., del Pino Alemán, T., Bueno, J.T., Casini, R.: 2022, TIC: a Stokes inversion code for scattering polarization with partial frequency redistribution and arbitrary magnetic fields. Astrophys. J. 933(2), 145. DOI.

    Article  ADS  Google Scholar 

  • Lites, B.W., Ichimoto, K.: 2013, The SP_PREP data preparation package for the hinode spectro-polarimeter. Solar Phys. 283(2), 601. DOI.

    Article  ADS  Google Scholar 

  • Lites, B., Casini, R., Garcia, J., Socas-Navarro, H.: 2006, A suite of community tools for spectro-polarimetric analysis. MemSAIt 78, 148.

    ADS  Google Scholar 

  • Liu, H., Xu, Y., Wang, J., Jing, J., Liu, C., Wang, J.T.L., Wang, H.: 2020, Inferring vector magnetic fields from Stokes profiles of GST/NIRIS using a convolutional neural network. Astrophys. J. 894(1), 70. DOI.

    Article  ADS  Google Scholar 

  • Malinin, A., Gales, M.: 2018, Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems, Curran Associates, Red Hook. DOI.

    Chapter  Google Scholar 

  • Milić, I., Gafeira, R.: 2020, Mimicking spectropolarimetric inversions using convolutional neural networks. Astron. Astrophys. 644, A129. DOI.

    Article  ADS  Google Scholar 

  • Okamoto, T., Tsuneta, S., Lites, B., Kubo, M., Yokoyama, T., Berger, T.E., et al.: 2009, Prominence formation associated with an emerging helical flux rope. Astrophys. J. 697, 913. DOI.

    Article  ADS  Google Scholar 

  • Pawitan, Y.: 2001 In All Likelihood: Statistical Modelling and Inference Using Likelihood, OUP, Oxford.

    MATH  Google Scholar 

  • Podladchikova, T., Jain, S., Veronig, A., Sutyrina, O., Dumbovic, M., Clette, F., et al.: 2022, Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude. Astron. Astrophys. 663, A88. DOI.

    Article  ADS  Google Scholar 

  • Quinonero-Candela, J., Rasmussen, C.E., Sinz, F., Bousquet, O., Schölkopf, B.: 2005, Evaluating Predictive Uncertainty Challenge, Machine Learning Challenges Workshop 1, Springer, Berlin. DOI.

    Book  Google Scholar 

  • Ramos, A.A., Baso, C.D.: 2019, Stokes inversion based on convolutional neural networks. Astron. Astrophys. 626, A102. DOI.

    Article  Google Scholar 

  • Ramos, A.A., González, M.J.M., Rubiño-Martín, J.A.: 2007, Bayesian inversion of Stokes profiles. Astron. Astrophys. 476(2), 959. DOI.

    Article  ADS  Google Scholar 

  • Ramos, A.A., de la Cruz Rodríguez, J., González, M.J.M., Yabar, A.P.: 2016, Inversion of Stokes profiles with systematic effects. Astron. Astrophys. 590, A87. DOI.

    Article  Google Scholar 

  • Ramos, A.A., de la Cruz Rodríguez, J., González, M.J.M., Socas-Navarro, H.: 2017, Inference of the chromospheric magnetic field orientation in the ca ii 8542 a line fibrils. Astron. Astrophys. 599, A133. DOI.

    Article  Google Scholar 

  • Rudenko, G.V., Anfinogentov, S.A.: 2013, Very fast and accurate azimuth disambiguation of vector magnetograms. Solar Phys. 289(5), 1499. DOI.

    Article  ADS  Google Scholar 

  • Shorten, C., Khoshgoftaar, T.M.: 2019, A survey on image data augmentation for deep learning. J. Big Data 6(1), 60. DOI.

    Article  Google Scholar 

  • Shrestha Durga, L., Solomatine Dimitri, P.: 2006, Machine learning approaches for estimation of prediction interval for the model output. Neural Netw. 19(2), 225. DOI.

    Article  MATH  Google Scholar 

  • Socas-Navarro, H.: 2005, Strategies for spectral profile inversion using artificial neural networks. Astrophys. J. 621(1), 545. DOI.

    Article  ADS  Google Scholar 

  • Unno, W.: 1956, Line formation of a normal Zeeman triplet. Publ. Astron. Soc. Japan 8, 108.

    ADS  Google Scholar 

  • Viticchié, B., Almeida, J.S.: 2011, Asymmetries of the Stokes V profiles observed by Hinode SOT/SP in the quiet sun. Astron. Astrophys. 530, A14. DOI.

    Article  Google Scholar 

  • Xu, W., Chen, W., Liang, Y.: 2018, Feasibility study on the least square method for fitting non-Gaussian noise data. Physica A 492, 1917. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Denis Derkach, Lukia Mistryukova, Aleksandr Khizhik, and Mikhail Hushchyn are grateful to the HSE basic research program. This research was supported in part through computational resources of HPC facilities at HSE University (Kostenetskiy, Chulkevich, and Kozyrev 2021).

Author information

Authors and Affiliations

Authors

Contributions

D.D. conceived and led the research; L.M. and A.K. performed calculations and processed the results; A.P., I.K., M.H. and D.D. analyzed and discussed the results; L.M., I.K. and D.D. wrote the main manuscript text; A.P. and I.K. processed data samples. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lukia Mistryukova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistryukova, L., Plotnikov, A., Khizhik, A. et al. Stokes Inversion Techniques with Neural Networks: Analysis of Uncertainty in Parameter Estimation. Sol Phys 298, 98 (2023). https://doi.org/10.1007/s11207-023-02189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02189-4

Keywords

Navigation