Skip to main content
Log in

A Novel Approach for Forecasting Cycle 25

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A novel approach to forecast the ongoing solar cycle, Cycle 25, is proposed in this article. The new (Version 2.0) of the smoothed monthly sunspot number is well fitted by our four-parameter function, with a mean correlation coefficient of \(\overline{r} = 0.984 \) for all the past cycles. This function can be simplified into different reduced functions, which are more suitable for making predictions. The free parameters of these reduced functions are either \(B\), the key parameter, as it is linked to the amplitude, or both \(B\) and \(\alpha \) (the parameter linked to the rising time). Three predictions are made. First, relying on the available data (i.e., 25 months) from the sunspot series, we use a two-parameter function to estimate the peak value to be \(A = 172 \pm 18\) SSN (sunspot number) around \(2024.7 \pm 0.7\) year. Then, we propose a new model as the foundation of the other two forecasts. A new three-parameter function is introduced to fit the \(B\)-parameters of the previous cycles and forecast the ongoing ones. The predictive power of our two functions is added to make two more predictions about the peak of Cycle 25; one that considers the available data (\(A = 147 \pm 27\) SSN around \(2024.6 \pm 0.7\) year) and another that does not (\(A = 156 \pm 31\) SSN around \(2024.3 \pm 0.7\) year). By taking the crossing of the confidence intervals, we estimate Cycle 25 to reach its peak \(A = 164 \pm 10\) SSN around \(2024.5 \pm 0.7 \) year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

The data used in this study are downloaded from the Sunspot Index and Long-term Solar Observations website (https://www.sidc.be/silso/datafiles).

References

  • Bhowmik, P., Nandy, D.: 2018, Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat. Commun. 9, 5209. DOI.

    Article  ADS  Google Scholar 

  • Carrington, R.C.: 1859, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc. 20, 13.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. Space Sci. Rev. 186, 35. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291, 2629. DOI.

    Article  ADS  Google Scholar 

  • De Meyer, F.: 1998, Modulation of the solar magnetic cycle. Solar Phys. 181, 201. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508. DOI.

    Article  ADS  Google Scholar 

  • Dikpati, M., De Toma, G., Gilman, P.A.: 2006, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33. DOI.

  • Du, Z.L.: 2022, The solar cycle: a modified Gaussian function for fitting the shape of the solar cycle and predicting cycle 25. Astrophys. Space Sci. 367, 1. DOI.

    Article  Google Scholar 

  • Du, Z.L., Wang, H.N.: 2011, The prediction method of similar cycles. Res. Astron. Astrophys. 11, 1482. DOI.

    Article  ADS  Google Scholar 

  • Fye, F.K., Cleaveland, M.K.: 2001, Paleoclimatic analyses of tree-ring reconstructed summer drought in the United States, 1700-1978. Tree-Ring Res. 57, 31.

    Google Scholar 

  • Han, Y.B., Yin, Z.Q.: 2019, A decline phase modeling for the prediction of solar cycle 25. Solar Phys. 294, 1. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2015, The solar cycle. Living Rev. Solar Phys. 12, 1. DOI.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. Space Phys. 121, 10. DOI.

    Article  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177. DOI.

    Article  ADS  Google Scholar 

  • Hazra, G., Choudhuri, A.R.: 2019, A new formula for predicting solar cycles. Astrophys. J. 880, 113. DOI.

    Article  ADS  Google Scholar 

  • Ihaka, R., Gentleman, R.: 1996, R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5(3), 299.

    Google Scholar 

  • Iijima, H., Hotta, H., Imada, S., Kusano, K., Shiota, D.: 2017, Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron. Astrophys. 607, L2. DOI.

    Article  ADS  Google Scholar 

  • Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381, 1527. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2007, A preliminary estimate of the size of the coming solar cycle 24, based on Ohl’s precursor method. Solar Phys. 243, 205. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kumar, R., Kakad, A.: 2020, Randomness in sunspot number: a clue to predict solar cycle 25. Solar Phys. 295, 1. DOI.

    Article  Google Scholar 

  • Ku, H.H.: 1966, Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 70, 263.

    Google Scholar 

  • Li, F.Y., Xiang, N.B., Kong, D.F., Xie, J.L.: 2017, The shape of solar cycles described by a simplified binary mixture of Gaussian functions. Astrophys. J. 834, 192. DOI.

    Article  ADS  Google Scholar 

  • Li, F.Y., Kong, D.F., Xie, J.L., Xiang, N.B., Xu, J.C.: 2018, Solar cycle characteristics and their application in the prediction of cycle 25. J. Atmos. Sol.-Terr. Phys. 181, 110. DOI.

    Article  ADS  Google Scholar 

  • Lu, J.Y., Xiong, Y.T., Zhao, K., Wang, M., Li, J.Y., Peng, G.S., Sun, M.: 2022, A novel bimodal forecasting model for Solar Cycle 25. Astrophys. J. 924, 59. DOI.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Chapman, S., Leamon, R.J., Egeland, R., Watkins, N.W.: 2020, Overlapping magnetic activity cycles and the sunspot number: forecasting sunspot cycle 25 amplitude. Solar Phys. 295, 1. DOI.

    Article  Google Scholar 

  • Nandy, D.: 2021, Progress in solar cycle predictions: sunspot cycles 24 – 25 in perspective. Solar Phys. 296, 54. DOI.

    Article  ADS  Google Scholar 

  • Ohl, A.I.: 1966, Wolf’s number prediction for the maximum of the cycle 20. Soln. Dannye 12, 84.

    Google Scholar 

  • Okoh, D.I., Seemala, G.K., Rabiu, A.B., Uwamahoro, J., Habarulema, J.B., Aggarwal, M.: 2018, A Hybrid Regression-Neural Network (HR-NN) method for forecasting the solar activity. Space Weather 16, 1424. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: 2012, Solar cycle predictions (invited review). Solar Phys. 281, 507. DOI.

    Article  ADS  Google Scholar 

  • Pesnell, P.W.D., Schatten, K.H.: 2018, An early prediction of the amplitude of solar cycle 25. Solar Phys. 293, 1. DOI.

    Article  Google Scholar 

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 1. DOI.

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2020, Solar cycle prediction. Living Rev. Solar Phys. 17, 1. DOI.

    Article  ADS  Google Scholar 

  • Pishkalo, M.I.: 2008, Preliminary prediction of solar cycles 24 and 25 based on the correlation between cycle parameters. Kinemat. Phys. Celest+ 24, 242. DOI.

    Article  Google Scholar 

  • Sarp, V., Kilcik, A., Yurchyshyn, V., Rozelot, J.P., Ozguc, A.: 2018, Prediction of solar cycle 25: a non-linear approach. Mon. Not. Roy. Astron. Soc. 481, 2981. DOI.

    Article  ADS  Google Scholar 

  • Schatten, K., Myers, D.J., Sofia, S.: 1996, Solar activity forecast for solar cycle 23. Geophys. Res. Lett. 23, 605. DOI.

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1843, Solar observations during 1843. Astron. Nachr. 20, 495.

    Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: 2017, Shannon entropy-based prediction of solar cycle 25. Solar Phys. 292, 1. DOI.

    Article  ADS  Google Scholar 

  • Kitiashvili, I.N.: 2020, Application of synoptic magnetograms to global solar activity forecast. Astrophys. J. 890, 36. DOI.

    Article  ADS  Google Scholar 

  • Vaquero, J.M., García, J.A., Gallego, M.C.: 2006, A note on solar cycle length estimates. Solar Phys. 235, 433. DOI.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1949, Die Sonnenaktivität im Jahre 1947. Schulthess & Co., Eidgen. Sternwarte Zürich.

    Google Scholar 

  • Wang, Y.M., Sheeley, N.R.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. 694, L11. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Grateful acknowledgment is due to Abdelghani Berrabah for valuable discussions and comments, to the Royal Observatory of Belgium for providing the SSN data, and to the anonymous reviewer whose insightful comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Becheker: conceptualization, investigation, statistical analysis, interpretations of results, writing, resources. Belhadi: investigation, supervision, validation, interpretation of results. Zaidi: investigation, statistical analysis, writing. Bekli: supervision, validation, interpretation of results, resources.

Corresponding author

Correspondence to Katia Becheker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 1.5 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becheker, K., Belhadi, Z., Zaidi, A. et al. A Novel Approach for Forecasting Cycle 25. Sol Phys 298, 65 (2023). https://doi.org/10.1007/s11207-023-02156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02156-z

Keywords

Navigation