Skip to main content
Log in

Coronal Elemental Abundances During A-Class Solar Flares Observed by Chandrayaan-2 XSM

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The abundances of low first ionization potential (FIP) elements are three to four times higher in the closed loop active corona than in the photosphere, known as the FIP effect. Observations suggest that the abundances vary in different coronal structures. Here, we use the soft X-ray spectroscopic measurements from the Solar X-ray Monitor (XSM) onboard the Chandrayaan-2 orbiter to study the FIP effect in multiple A-class flares observed during the minimum of Solar Cycle 24. Using time-integrated spectral analysis, we derive the average temperature, emission measure, and the abundances of four elements – Mg, Al, Si, and S. We find that the temperature and emission measure scales with the sub-class of flares while the measured abundances show an intermediate FIP bias for the lower A-flares (e.g. A1), while for the higher A-flares, the FIP bias is near unity. To investigate it further, we perform a time-resolved spectral analysis for a sample of the A-class flares and examine the evolution of temperature, emission measure, and abundances. We find that the abundances drop from the coronal values towards their photospheric values in the impulsive phase of the flares and, after the impulsive phase, they quickly return to the usual coronal values. The transition of the abundances from the coronal to photospheric values in the impulsive phase of the flares indicates the injection of fresh unfractionated material from the lower solar atmosphere to the corona due to chromospheric evaporation. However, explaining the quick recovery of the abundances from the photospheric to coronal values in the decay phase of the flare is challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

The data used in this work is available at https://pradan.issdc.gov.in/ch2/.

Notes

  1. https://www.prl.res.in/ch2xsm/.

  2. https://pradan.issdc.gov.in/pradan/.

References

  • Antonucci, E., Dennis, B.R., Gabriel, A.H., Simnett, G.M.: 1985, Initial phase of chromospheric evaporation in a solar flare. Solar Phys. 96(1), 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Arnaud, K., Dorman, B., Gordon, C.: 1999, XSPEC: an X-ray spectral fitting package. ADS.

  • Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47(1), 481. DOI.

    Article  ADS  Google Scholar 

  • Baker, D., Brooks, D.H., Démoulin, P., van Driel-Gesztelyi, L., Green, L.M., Steed, K., Carlyle, J.: 2013, Plasma composition in a sigmoidal anemone active region. Astrophys. J. 778(1), 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D., Brooks, D.H., Démoulin, P., Yardley, S.L., van Driel-Gesztelyi, L., Long, D.M., Green, L.M.: 2015, FIP bias evolution in a decaying active region. Astrophys. J. 802(2), 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Brooks, D.H., Valori, G., James, A.W., Laming, J.M., Long, D.M., Démoulin, P., Green, L.M., Matthews, S.A., Oláh, K., Kővári, Z.: 2019, Transient inverse-FIP plasma composition evolution within a solar flare. Astrophys. J. 875(1), 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys. 14(1), 2. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Bochsler, P.: 2007, Minor ions in the solar wind. Astron. Astrophys. Rev. 14, 1. DOI.

    Article  ADS  Google Scholar 

  • Brooks, D.H., Baker, D., Van Driel-Gesztelyi, L., Warren, H.P.: 2017, A solar cycle correlation of coronal element abundances in Sun-as-a-star observations. Nat. Commun. 8(1), 183. DOI.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. In: NASA SP-50, 451. ADS.

    Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for hinode. Solar Phys. 243(1), 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dahlburg, R.B., Laming, J.M., Taylor, B.D., Obenschain, K.: 2016, Ponderomotive acceleration in coronal loops. Astrophys. J. 831(2), 160. DOI.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Mason, H.E.: 2018, Solar UV and X-ray spectral diagnostics. Living Rev. Solar Phys. 15(1), 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Dere, K.P., Young, P.R., Landi, E.: 2021, CHIANTI—an atomic database for emission lines. XVI. Version 10, further extensions. Astrophys. J. 909(1), 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R., Phillips, K.J.H., Schwartz, R.A., Tolbert, A.K., Starr, R.D., Nittler, L.R.: 2015, Solar flare element abundances from the solar assembly for x-rays (sax) onmessenger. Astrophys. J. 803(2), 67. DOI.

    Article  ADS  Google Scholar 

  • Feldman, U.: 1992, Elemental abundances in the upper solar atmosphere. Phys. Scr. 46(3), 202. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Feldman, U., Laming, J.: 2006, Element abundances in the upper atmospheres of the sun and stars: update of observational results. Phys. Scr. 61, 222. DOI.

    Article  ADS  Google Scholar 

  • Feldman, U., Widing, K.G.: 2003, Elemental abundances in the solar upper atmosphere derived by spectroscopic means. Space Sci. Rev. 107, 665. DOI.

    Article  ADS  Google Scholar 

  • Feldman, U., Widing, K.G.: 1990, Photospheric abundances of oxygen, neon, and argon derived from the XUV spectrum of an impulsive flare. Astrophys. J. 363, 292. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feldman, U., Schühle, U., Widing, G., Laming, M.: 2009, Coronal composition above the solar equator and the North Pole as determined from spectra acquired by the sumer instrument on soho. Astrophys. J. 505, 999. DOI.

    Article  ADS  Google Scholar 

  • Fludra, A., Schmelz, J.T.: 1999, The absolute coronal abundances of sulfur, calcium, and iron from Yohkoh-BCS flare spectra. Astron. Astrophys. 348, 286. ADS.

    ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., Mccracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S., Deluca, E., Sakao, T., Kano, R., Shibasaki, K., Mccracken, J.: 2007, The X-ray telescope (XRT) for the hinode mission. Solar Phys. 243, 63. DOI.

    Article  ADS  Google Scholar 

  • Hefti, S., Fisk, L., Gloeckler, G., Von Steiger, R., Zurbuchen, T.: 1999, The transition between fast and slow solar wind from composition data. Space Sci. Rev. 87, 353. 978-90-481-5267-4. DOI.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: evaporating flare model. Solar Phys. 34(2), 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Katsuda, S., Ohno, M., Mori, K., Beppu, T., Kanemaru, Y., Tashiro, M.S., Terada, Y., Sato, K., Morita, K., Sagara, H., Ogawa, F., Takahashi, H., Murakami, H., Nobukawa, M., Tsunemi, H., Hayashida, K., Matsumoto, H., Noda, H., Nakajima, H., Ezoe, Y., Tsuboi, Y., Maeda, Y., Yokoyama, T., Narukage, N.: 2020, Inverse first ionization potential effects in giant solar flares found from Earth X-ray Albedo with Suzaku/XIS. Astrophys. J. 891(2), 126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2017, Nanoflare Heating: Observations and Theory. arXiv e-prints. arXiv. ADS.

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50(1), 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The hinode (Solar-B) mission: an overview. Solar Phys. 243(1), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Laming, J.M.: 2004, A unified picture of the first ionization potential and inverse first ionization potential effects. Astrophys. J. 614(2), 1063. DOI.

    Article  ADS  Google Scholar 

  • Laming, J.M.: 2012, Non-WKB models of the first ionization potential effect: the role of slow mode waves. Astrophys. J. 744(2), 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Laming, J.M.: 2015, The FIP and inverse FIP effects in Solar and Stellar Coronae. Living Rev. Solar Phys. 12, 1. DOI.

    Article  ADS  Google Scholar 

  • Laming, J.M., Hwang, U.: 2009, Thermal conductivity and element fractionation in EV Lac. Astrophys. J. 707(1 PART 2), 60. DOI.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275(1–2), 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Meyer, J.-P.: 1985, Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays. Astron. Astrophys. Suppl. Ser. 57, 173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mithun, N.P.S., Vadawale, S.V., Sarkar, A., Shanmugam, M., Patel, A.R., Mondal, B., Joshi, B., Janardhan, P., Adalja, H.L., Goyal, S.K., et al.: 2020, Solar x-ray monitor on board the chandrayaan-2 orbiter: in-flight performance and science prospects. Solar Phys. 295(10), 139. DOI.

    Article  ADS  Google Scholar 

  • Mithun, N.P.S., Vadawale, S.V., Patel, A.R., Shanmugam, M., Chakrabarty, D., Konar, P., Sarvaiya, T.N., Padia, G.D., Sarkar, A., Kumar, P., et al.: 2021, Data processing software for chandrayaan-2 solar x-ray monitor. Astron. Comput. 34, 100449. DOI.

    Article  ADS  Google Scholar 

  • Mondal, B., Sarkar, A., Vadawale, S.V., Mithun, N.P.S., Janardhan, P., Zanna, G.D., Mason, H.E., Mitra-Kraev, U., Narendranath, S.: 2021, Evolution of elemental abundances during b-class solar flares: soft x-ray spectral measurements with chandrayaan-2 XSM. Astrophys. J. 920(1), 4. DOI.

    Article  ADS  Google Scholar 

  • Munuswamy, S., Vadawale, S., Patel, A., Adalaja, H., Mithun, N.P.S., Ladiya, T., Goyal, S., Tiwari, N., Singh, N., Kumar, S., Painkra, D., Acharya, Y., Bhardwaj, A., Hait, A., Patinge, A., Kapoor, A., Kumar, H., Satya, N.K., Saxena, G., Arvind, K.: 2020, Solar x-ray monitor onboard chandrayaan-2 orbiter. Curr. Sci. India 118, 45. DOI.

    Article  ADS  Google Scholar 

  • Narendranath, S., Sreekumar, P., Alha, L., Sankarasubramanian, K., Huovelin, J., Athiray, P.S.: 2014, Elemental abundances in the solar corona as measured by the X-ray solar monitor onboard chandrayaan-1. Solar Phys. 289(5), 1585. DOI. ADS.

    Article  ADS  Google Scholar 

  • Narendranath, S., Sreekumar, P., Pillai, N.S., Panini, S., Sankarasubramanian, K., Huovelin, J.: 2020, Coronal elemental abundance: new results from soft x-ray spectroscopy of the sun. Solar Phys. 295(12), 175. DOI.

    Article  ADS  Google Scholar 

  • Mithun, N.P.S., Vadawale, S., Munuswamy, S., Patel, A., Tiwari, N., Adalja, H., Goyal, S., Ladiya, T., Singh, N., Kumar, S., Tiwari, M., Modi, M., Mondal, B., Sarkar, A., Joshi, B., Janardhan, P., Bhardwaj, A.: 2021, Ground calibration of solar x-ray monitor on board the chandrayaan-2 orbiter. Exp. Astron. 51, 1. DOI.

    Article  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275(1–2), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Phillips, K.J.H., Dennis, B.R.: 2012, The solar flare iron abundance. Astrophys. J. 748(1), 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Phillips, K.J.H., Sylwester, J., Sylwester, B., Landi, E.: 2003, Solar flare abundances of potassium, argon, and sulphur. Astrophys. J. Lett. 589(2), L113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pipin, V., Tomozov, V.: 2018, The nature of variations in anomalies of the chemical composition of the solar corona with the 11-year cycle. Astron. Rep. 62, 281. DOI.

    Article  ADS  Google Scholar 

  • Pottasch, S.R.: 1963, The lower solar corona: interpretation of the ultraviolet spectrum. Astrophys. J. 137, 945. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ryan, D., Milligan, R., Gallagher, P., Dennis, B., Tolbert, A., Schwartz, R., Young, C.: 2012, The thermal properties of solar flares over three solar cycles using goes x-ray observations. Astron. Astrophys. Suppl. Ser. 202, 11. DOI.

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Reames, D.V., von Steiger, R., Basu, S.: 2012, Composition of the solar corona, solar wind, and solar energetic particles. Astrophys. J. 755(1), 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211(5050), 695. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sylwester, B., Sylwester, J., Phillips, K.J.H., Kepa, A., Mrozek, T.: 2014, Solar flare composition and thermodynamics from resik x-ray spectra. Astrophys. J. 787(2), 122. DOI.

    Article  ADS  Google Scholar 

  • Sylwester, B., Phillips, K.J.H., Sylwester, J., Kepa, A.: 2015, Resik Solar X-Ray Flare Element Abundances on a Non-isothermal Assumption. Astrophys. J. 805, 1. DOI.

    Article  Google Scholar 

  • Sylwester, J., Lemen, J.R., Mewe, R.: 1984, Variation in observed coronal calcium abundance of X-ray flare plasmas. Nature 310(5979), 665. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sylwester, J., Sylwester, B., Phillips, K.J.H., Kuznetsov, V.D.: 2012, The solar flare sulfur abundance from RESIK observations. Astrophys. J. 751(2), 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vadawale, S.V., Shanmugam, M., Acharya, Y.B., Patel, A.R., Goyal, S.K., Shah, B., Hait, A.K., Patinge, A., Subrahmanyam, D.: 2014, Solar X-ray monitor (XSM) on-board chandrayaan-2 orbiter. Adv. Space Res. 54(10), 2021. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vadawale, S.V., Mondal, B., Mithun, N.P.S., Sarkar, A., Janardhan, P., Joshi, B., Bhardwaj, A., Shanmugam, M., Patel, A.R., Adalja, H.K.L., et al.: 2021a, Observations of the quiet sun during the deepest solar minimum of the past century with chandrayaan-2 xsm: elemental abundances in the quiescent corona. Astrophys. J. Lett. 912(1), L12. DOI.

    Article  ADS  Google Scholar 

  • Vadawale, S.V., Mithun, N.P.S., Mondal, B., Sarkar, A., Janardhan, P., Joshi, B., Bhardwaj, A., Shanmugam, M., Patel, A.R., Adalja, H.K.L., et al.: 2021b, Observations of the quiet sun during the deepest solar minimum of the past century with chandrayaan-2 xsm: sub-a-class microflares outside active regions. Astrophys. J. Lett. 912(1), L13. DOI.

    Article  ADS  Google Scholar 

  • Vanitha, M., Veeramuthuvel, P., Kalpana, K., Nagesh, G.: 2020, Chandrayaan-2: the second Indian mission to the Moon. In: 51st Annual Lunar and Planetary Science Conference. 1994. ADS.

    Google Scholar 

  • von Steiger, R., Schwadron, N.A., Fisk, L.A., Geiss, J., Gloeckler, G., Hefti, S., Wilken, B., Wimmer-Schweingruber, R.F., Zurbuchen, T.H.: 2000, Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res. 105(A12), 27217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warren, H.P.: 2014, Measurements of absolute abundances in solar flares. Astrophys. J. 786(1), L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Widing, K.G., Feldman, U.: 2001, On the rate of abundance modifications versus time in active region plasmas. Astrophys. J. 555(1), 426. DOI.

    Article  ADS  Google Scholar 

  • Zanna, G., Woods, T.: 2013, Spectral diagnostics with the sdo eve flare lines. Astron. Astrophys. 555, A59. DOI.

    Article  Google Scholar 

  • Zanna, G.D., Mondal, B., Rao, Y.K., Mithun, N.P.S., Vadawale, S.V., Reeves, K.K., Mason, H.E., Sarkar, A., Janardhan, P., Bhardwaj, A.: 2022, Multiwavelength observations by XSM, hinode, and SDO of an active region. Chemical abundances and temperatures. Astrophys. J. 934(2), 159. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

XSM was designed and developed by the Physical Research Laboratory (PRL), Ahmedabad, with support from the Space Application Centre (SAC), Ahmedabad, the U. R. Rao Satellite Centre (URSC), Bengaluru, and the Laboratory for Electro-Optics Systems (LEOS), Bengaluru. We thank various facilities and the technical teams of all the above centers and the Chandrayaan-2 project, mission operations, and ground segment teams for their support. The Chandrayaan-2 mission is funded and managed by the Indian Space Research Organisation (ISRO). We are very grateful to Mithun N.P.S and Dr. Santosh Vadawale for the helpful scientific discussions and important suggestions for this work. L. Nama acknowledges the support and resources provided during my visit to Physical Research Laboratory (PRL), Ahmedabad, thanks to Dr. Anil Bhardwaj.

Author information

Authors and Affiliations

Authors

Contributions

Lakshitha Nama and Biswajit Mondal carried out the analysis and wrote the manuscript with support from S. Narendranth. Biswajit Mondal, S. Narendranath, and K.T. Paul supervised the project.

Corresponding authors

Correspondence to Lakshitha Nama or Biswajit Mondal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Plasma parameters obtained from the 1T spectral analysis for all the A-class flares considered in this study. Flare IDs corresponding to peak times of the flares is given in the format SOLyyyy-mm-ddThh:mm. Approximate GOES classes are mentioned according to the peak flux of the flare in the 1 – 8 Å XSM flux. Errors correspond to the 1 \(\sigma\) limits associated with the parameters.
Figure 9
figure 9

Evolution of temperature for the remaining sets of flares, similar to Figure 8 panels a–c.

Figure 10
figure 10

Evolution of emission measure for the remaining sets of flares, similar to Figure 7 panels d–f.

Figure 11
figure 11

Evolution of absolute Mg abundance for the remaining sets of flares, similar to Figure 7 panels g–i.

Figure 12
figure 12

Evolution of absolute Al abundance for the remaining sets of flares, similar to Figure 7 panels j–l.

Figure 13
figure 13

Evolution of absolute Si abundance for the remaining sets of flares, similar to Figure 7 panels m–o.

Figure 14
figure 14

Evolution of absolute S abundance for the last set of flares, similar to Figure 7 panel p.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nama, L., Mondal, B., Narendranath, S. et al. Coronal Elemental Abundances During A-Class Solar Flares Observed by Chandrayaan-2 XSM. Sol Phys 298, 55 (2023). https://doi.org/10.1007/s11207-023-02142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02142-5

Keywords

Navigation