Skip to main content
Log in

High-Energy Emissions Observed in the Impulsive Phase of the 2001 August 25 Eruptive Flare

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze here the impulsive phase of the 2001 August 25 eruptive flare (X5.3, S21, E38) in order to reveal the link of the time evolution of the magnetic-field reconnection rate \(\dot{\varphi}(t)\) with the energy-release process, as quantified by electron and proton acceleration to high energies. Hard X-rays and \(\upgamma \)-rays from 150 keV to 100 MeV were observed by the SONG (SOlar Neutrons and Gamma) detector onboard the CORONAS-F (Complex ORbital ObservatioNs of the Active Sun) mission. The soft X-ray derivative \(dI_{\mathrm{SXR}}/dt\) was used as a proxy for the flare energy release that revealed itself as a sequence of acceleration pulses. The reconnection rate \(\dot{\varphi}(t)\) was calculated previously from flare-ribbon observations in EUV and coaligned magnetic-field maps. The \(\upgamma \)-ray emission spectra were obtained from SONG data. All spectra contain both bremsstrahlung and \(\upgamma \)-ray lines. The bremsstrahlung spectrum extends to tens of MeV. The pion-decay gamma-ray emission, being a manifestation of proton acceleration to subrelativistic energies, appeared for the first time in the time interval of the \(\dot{\varphi}(t)\) maximum. This maximum was ahead of the maxima of \(dI_{\mathrm{SXR}}/dt\) as well as of all other emissions by about one minute. Proton acceleration to subrelativistic energies is confirmed by detection of solar neutrons by SONG and the Chacaltaya neutron monitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study were derived from the following public-domain resources: Yohkoh Legacy data Archive http://ylstone.physics.montana.edu/ylegacy/; Konus-Wind Solar Flare Database http://www.ioffe.ru/LEA/kwsun/; RSTN data ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/ NOAA, Space Environment Center; ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-radio/rstn-1-second/sagamore-hill/2001/08/. The CORONAS-F/SONG data are available from the corresponding author on reasonable request.

References

  • Ackermann, M., Ajello, M., Allafort, A., Atwood, W.B., Baldidi, L., Barbellini, G., et al.: 2012, Fermi detection of \(\upgamma \)-ray emission from the M2 soft X-ray flare on 2010 June 12. Astrophys. J. 745, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ajello, M., Baldini, L., Bastieri, D., Bellazzini, R., Berretta, A., Bissaldi, E., et al.: 2021, First Fermi-LAT solar flare catalog. Astrophys. J. Suppl. 252, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Caspi, A., Cohen, C.M.S., Holman, G., Jing, J., Kretzschmar, M., Kontar, E., et al.: 2017, Global energetics of solar flares. V. Energy closure in flares and coronal mass ejections. Astrophys. J. 836, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Benz, A.: 2008, Flare observations. Living Rev. Solar Phys. 5, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. NASA Spec. Publ. 50, 451.

    ADS  Google Scholar 

  • Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect – what can it tell up about the impulsive and gradual phases of solar flares. Solar Phys. 146, 177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B., Veronig, A., Schwartz, R.: 2003, The Neupert effect and new RHESSI measures of the total energy in electrons accelerated in solar flares. Adv. Space Res. 32, 2459.

    ADS  Google Scholar 

  • Dunphy, P., Chupp, E., Bertsch, D.L., Schneid, E.J., Gottesman, S.R., Kanbach, G.: 1999, Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991. Solar Phys. 187, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Emslie, G., Dennis, B.R., Shih, A.Y., Chamberlin, C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 799, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.: 2001, The magnetic structure and generation of EUV flare ribbons. Solar Phys. 204, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Forbes, T.G., Lin, J.: 2000, What can we learn about reconnection from coronal mass ejections? J. Atmos. Solar-Terr. Phys. 62, 1499.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A., Uralov, A.M.: 2023, The 25 August 2001 high-energy solar event. Eruptive flare, CME, and shock wave. Solar Phys. in press.

  • Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., et al.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229.

    Article  ADS  Google Scholar 

  • Hinterreiter, J., Veronig, A.M., Thalmann, J.K., Tschernitz, J., Pötzi, W.: 2018, Statistical properties of ribbon evolution and reconnection electric fields in eruptive and confined flares. Solar Phys. 293, 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I. Evaporating flare model. Solar Phys. 34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 1991, Solar flares, microflares, nanoflares, and coronal heating. Solar Phys. 133, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jokipii, J.R.: 1979, Particle Acceleration Mechanisms in Astrophysics, AIP Conf. Proc. 56, AIP, La Jolla, 1.

    Google Scholar 

  • Klein, K.-L., Trottet, G., Magun, A.: 1986, Microwave diagnostics of energetic electrons in flares. Solar Phys. 104, 243.

    Article  ADS  Google Scholar 

  • Kong, X., Chen, B., Guo, F., Shen, C., Li, X., Ye, J., Zhao, L., Jiang, Z., Yu, S., Chen, Y., Giacalone, J.: 2022, Numerical modeling of energetic electron acceleration, transport, and emission in solar flares: connecting loop-top and footpoint hard X-ray sources. Astrophys. J. 941, L22.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Brown, J.C., Emslie, A.G., Hajdas, W., Holman, G., Hurford, G., Kašparová, J., et al.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Perez, J.E., Harra, L.K., Kuznetsov, A.A., Emslie, A.G., Jeffrey, N.L.S., Bian, N.H., Dennis, B.R.: 2017, Turbulent kinetic energy in the energy balance of a solar flare. Phys. Rev. Lett. 118, 155101.

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85.

    Article  ADS  Google Scholar 

  • Kosugi, T., Makishima, K., Murakami, T., Sakao, T., Dotani, T., Inda, M., Kai, K., et al.: 1991, The Hard X-ray Telescope (HXT) for the SOLAR-A mission. Solar Phys. 136, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kurt, V., Belov, A., Mavromichalaki, H., Gerontidou, M.: 2004, Statistical analysis of solar proton events. Ann. Geophys. 22, 2255.

    Article  ADS  Google Scholar 

  • Kurt, V.G., Yushkov, B.Yu., Kudela, K., Galkin, V.I.: 2010, High-energy gamma radiation of solar flares as an indicator of acceleration of energetic protons. Cosm. Res. 48, 70.

    Article  ADS  Google Scholar 

  • Kurt, V., Kudela, K., Yushkov, B., Galkin, V.: 2013, On the onset time of several SPE/GLE events: indications from high-energy gamma-ray and neutron measurements by CORONAS-F. Adv. Astron. 2013, 690921. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, A.A., Kontar, E.P.: 2015, Spatially resolved energetic electron properties for the 21 May 2004 flare from radio observations and 3D simulations. Solar Phys. 290, 79.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Myagkova, I.N., Yushkov, B.Yu., Kudela, K.: 2006, Gamma-ray emission and neutrons from solar flares recorded by the SONG instrument in 2001 – 2004. Solar Syst. Res. 40, 104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Kurt, V.G., Yushkov, B.Yu., Kudela, K., Galkin, V.I.: 2011, Gamma-ray and high-energy-neutron measurements on CORONAS-F during the solar flare of 28 October 2003. Solar Phys. 268, 175.

    Article  ADS  Google Scholar 

  • Li, X., Guo, F., Chen, B., Shen, C., Glesener, L.: 2022, Modeling electron acceleration and transport in the early impulsive phase of the 2017 September 10th solar flare. Astrophys. J. 932, 92.

    Article  ADS  Google Scholar 

  • Longcope, D.W., Beveridge, C.: 2007, A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669, 621. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lysenko, A.L., Altyntsev, A.T., Meshalkina, N.S., Zhdanov, D., Fleishman, G.D.: 2018, Statistics of “cold” early impulsive solar flares in X-Ray and microwave domains. Astrophys. J. 856, 111. DOI.

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Alexander, D., Hudson, H.S., Longcope, D.W.: 2003, TRACE and Yohkoh observations of a white-light flare. Astrophys. J. 595, 483. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miklenic, C.H., Veronig, A.M., Vršnak, B., Hanslmeier, A.: 2007, Reconnection and energy release rates in a two-ribbon flare. Astron. Astrophys. 461, 697. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miklenic, C.H., Veronig, A.M., Vršnak, B.: 2009, Temporal comparison of nonthermal flare emission and magnetic-flux change rates. Astron. Astrophys. 499, 893. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miller, J.A., Cargill, P.J., Emslie, A.J., Holman, G.D., Dennis, B.R., La Rosa, T.N., Winglee, R.M., Benka, S.G., Tsuneta, S.: 1997, Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102(A7), 14,631.

    Article  ADS  Google Scholar 

  • Murphy, R.J., Ramaty, R.: 1984, Solar-flare neutrons and gamma-rays. Adv. Space Res. 4, 127.

    Article  ADS  Google Scholar 

  • Murphy, R.J., Dermer, C.D., Ramaty, R.: 1987, High-energy processes in solar flares. Astrophys. J. Suppl. 63, 721.

    Article  ADS  Google Scholar 

  • Murphy, R.J., Kozlovsky, B., Kiener, J., Share, G.H.: 2009, Nuclear gamma-ray de-excitation lines and continuum from accelerated-particle interactions in solar flares. Astrophys. J. Suppl. 183, 142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. 153, L59.

    Article  ADS  Google Scholar 

  • Nita, G., Gary, D.E., Lee, J.: 2004, Statistical study of two years of solar flare radio spectra obtained with the Owens Valley Solar Array. Astrophys. J. 605, 528. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ogawara, Y., Takano, T., Kato, T., Kosugi, T., Tsuneta, S., Watanabe, T., Kondo, I., Uchida, Y.: 1991, The SOLAR-A mission – an overview. Solar Phys. 136, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priest, E., Forbes, T.: 2000, Magnetic Reconnection. MHD Theory and Applications, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qiu, J.: 2009, Observational analysis of magnetic reconnection sequence. Astrophys. J. 692, 1110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramaty, R., Murphy, R.J.: 1987, Nuclear processes and accelerated particles in solar flares. Space Sci. Rev. 45, 213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sato, J., Matsumoto, Y., Yoshimura, K., Kubo, S., Kotoku, J., Masuda, S., Sawa, M., Suga, K., Yoshimori, M., Kosugi, T., Watanabe, T.: 2006, YOHKOH/WBS recalibration and a comprehensive catalogue of solar flares observed by YOHKOH SXT, HXT and WBS instruments. Solar Phys. 236, 351. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695.

    Article  ADS  Google Scholar 

  • Tschernitz, J., Veronig, A.M., Thalmann, J.K., Hinterreiter, J., Pötzi, W.: 2018, Reconnection fluxes in eruptive and confined flares and implications for superflares on the Sun. Astrophys. J. 853, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vainio, R., Valtonen, E., Heber, B., Malandraki, O.E., Papaioannou, A., Klein, K.-L. et al.: 2013, The first SEPServer event catalogue \(\sim68\)-MeV solar proton events observed at 1 AU in 1996 – 2010. J. Space Weather Space Clim. 3, A12.

    Article  Google Scholar 

  • Veronig, A.M., Brown, J.C., Dennis, B.R., Schwartz, R.A., Sui, L., Tolbert, A.K.: 2005, Physics of the Neupert effect: estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophys. J. 621, 482.

    Article  ADS  Google Scholar 

  • Veronig, A., Polanec, W.: 2015, Magnetic reconnection rates and energy release in a confined X-class flare. Solar Phys. 290, 2923.

    Article  ADS  Google Scholar 

  • Vilmer, N., MacKinnon, A.L., Hurford, G.J.: 2011, Properties of energetic ions in the solar atmosphere from gamma-ray and neutron observations. Space Sci. Rev. 159, 167.

    Article  ADS  Google Scholar 

  • Watanabe, K., Muraki, Y., Matsubara, Y., Murakami, K., Sako, T., Tsuchiya, H., Masuda, S., et al.: 2003, Solar neutron event in association with a large solar flare on August 25, 2001. In: Proc. of the 28th ICRC, Tsukuba, Japan, 3179.

    Google Scholar 

  • White, S.M., Krucker, S., Shibasaki, K., Yokoyama, T., Shimojo, M., Kundu, M.R.: 2003, Radio and hard X-ray images of high-energy electrons in an X-class solar flare. Astrophys. J. 595, L111.

    Article  ADS  Google Scholar 

  • Zharkova, V.V., Arzner, K., Benz, A.O., Browning, P., Dauphin, C., Emslie, A., Fletcher, L., Kontar, E., Mann, G., Onofri, M., et al.: 2011, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referee for a very helpful and constructive review. We wish to acknowledge V.V. Grechnev, A.A. Kochanov, and A.M. Uralov whose calculations of reconnected magnetic flux in this flare are decisive in this paper. We also thank them for helpful advice and discussions. We appreciate the science and instrument teams of Yohkoh, GOES, CORONAS-F, and Konus-Wind. We are especially grateful to A.L. Lysenko for providing detailed measurements of this flare with the Konus instrument.

Funding

The study was carried out within the state budget topic no. 122071200023-6 for SINP MSU.

Author information

Authors and Affiliations

Authors

Contributions

B.Yu. Yushkov: primary data processing, development of spectra restoration method and its realization, scientific analysis of data, discussion of results and manuscript preparation. V.G. Kurt: main scientific analysis of data, discussion of results and manuscript preparation. V.I. Galkin: principal development of spectra restoration method and its realization, scientific analysis of data, discussion of results.

Corresponding author

Correspondence to Boris Y. Yushkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yushkov, B.Y., Kurt, V.G. & Galkin, V.I. High-Energy Emissions Observed in the Impulsive Phase of the 2001 August 25 Eruptive Flare. Sol Phys 298, 31 (2023). https://doi.org/10.1007/s11207-023-02123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02123-8

Keywords

Navigation