Skip to main content
Log in

Evaluating Pointing Strategies for Future Solar Flare Missions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar flares are events of intense scientific interest. Although certain solar conditions are known to be associated with flare activity, the exact location and timing of an individual flare on the Sun cannot as yet be predicted with certainty. Missions whose science objectives depend on observing solar flares must often make difficult decisions on where to target their observations if they do not observe the full solar disk. Yet, there is little analysis in the literature that might guide these mission operations to maximize their opportunities to observe flares. In this study, we analyze and simulate the performance of different observation strategies using historical flare and active region data from 2011 to 2014. We test a number of different target selection strategies based on active region complexity and recent flare activity, each of which is examined under a range of operational assumptions. In each case, we investigate various metrics such as the number of flares observed, the size of flares observed, and operational considerations such as the number of instrument repoints required. Overall, target selection methods based on recent flare activity showed the best overall performance but required more repointings than other methods. The mission responsiveness to new information is identified as another strong factor determining flare observation performance. It is also shown that target selection methods based on active region complexities show a significant pointing bias toward the western solar hemisphere. As expected, the number of flares observed grows quickly with field-of-view size until the approximate size of an active region is reached, but further improvements beyond the active region size are much more incremental. These results provide valuable performance estimates for a future mission focused on solar flares and inform the requirements that would ensure mission success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. The simulation code used to produce these results may be found at https://gitlab.com/foxsi-smex/mission_simulator.

  2. The LASCO CME catalog is available at https://cdaw.gsfc.nasa.gov/CME_list/.

  3. The TRACE flare catalog is available at http://helio.cfa.harvard.edu/trace/flare_catalog/.

  4. The Max Millennium program is described in http://solar.physics.montana.edu/max_millennium/.

References

  • Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Akiyama, S., Gopalswamy, N., Yashiro, S., Michalek, G.: 2019, Solar sources of coronal mass ejections. In: AGU Fall Meeting Abstracts 2019, SH11D. ADS.

    Google Scholar 

  • Andrews, M.D.: 2003, A search for CMEs associated with big flares. Solar Phys. 218, 261. DOI. ADS.

    Article  ADS  Google Scholar 

  • Barnes, G., Leka, K.D.: 2008, Evaluating the performance of solar flare forecasting methods. Astrophys. J. Lett. 688, L107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the “all-clear” workshop. Astrophys. J. 829, 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bloomfield, D.S., Gallagher, P.T., Marquette, W.H., Milligan, R.O., Canfield, R.C.: 2016, Performance of major flare watches from the max millennium program (2001–2010). Solar Phys. 291, 411. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798, 135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bornmann, P.L., Shaw, D.: 1994, Flare rates and the McIntosh active region classifications. Solar Phys. 150, 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Campi, C., Benvenuto, F., Massone, A.M., Bloomfield, D.S., Georgoulis, M.K., Piana, M.: 2019, Feature ranking of active region source properties in solar flare forecasting and the uncompromised stochasticity of flare occurrence. Astrophys. J. 883, 150. DOI. ADS.

    Article  ADS  Google Scholar 

  • Christe, S., Glesener, L., Buitrago-Casas, C., Ishikawa, S.-N., Ramsey, B., Gubarev, M., Kilaru, K., Kolodziejczak, J.J., Watanabe, S., Takahashi, T., Tajima, H., Turin, P., Shourt, V., Foster, N., Krucker, S.: 2016, FOXSI-2: upgrades of the Focusing Optics X-ray Solar Imager for its second flight. J. Astron. Instrum. 5, 1640005. DOI. ADS.

    Article  Google Scholar 

  • Christe, S., Shih, A.Y., Krucker, S., Glesener, L., Saint-Hilaire, P., Caspi, A., Gburek, S., Steslicki, M., Allred, J.C., Battaglia, M., Baumgartner, W.H., Drake, J., Goetz, K., Grefenstette, B., Hannah, I., Holman, G.D., Inglis, A., Ireland, J., Klimchuk, J.A., Ishikawa, S.-N., Kontar, E., Massone, A.-m., Piana, M., Ramsey, B., Schwartz, R.A., Woods, T.N., Chen, B., Gary, D.E., Hudson, H.S., Kowalski, A., Warmuth, A., White, S.M., Veronig, A., Vilmer, N.: 2019, The Focusing Optics X-ray Solar Imager (FOXSI). In: American Astronomical Society Meeting Abstracts #234, American Astronomical Society Meeting Abstracts 234, 225.01. ADS.

    Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Barghouty, A.F., Khazanov, I.: 2014, Mag4 versus alternative techniques for forecasting active region flare productivity. Space Weather 12, 306. DOI. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013SW001024.

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Moon, Y.-J., Wang, H.: 2002, Active-region monitoring and flare forecasting I. Data processing and first results. Solar Phys. 209, 171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grigis, P., Davey, A., Martens, P., Testa, P., Timmons, R., Su, Y. (SDO Feature Finding Team): 2010, The SDO flare detective. In: American Astronomical Society Meeting Abstracts #216, American Astronomical Society Meeting Abstracts 216, 402.08. ADS.

    Google Scholar 

  • Guo, J., Lin, J., Deng, Y.: 2014, The dependence of flares on the magnetic classification of the source regions in solar cycles 22–23. Mon. Not. Roy. Astron. Soc. 441, 2208. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 49, 153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland , S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., Cutler, R.M., Fludra, A., Hayes, R.W., Kent, B.J., Lang, J., Parker, D.J., Payne, J., Pike, C.D., Peskett, S.C., Richards, A.G., Gulhane, J.L., Norman, K., Breeveld, A.A., Breeveld, E.R., Al Janabi, K.F., McCalden, A.J., Parkinson, J.H., Self, D.G., Thomas, P.D., Poland, A.I., Thomas, R.J., Thompson, W.T., Kjeldseth-Moe, O., Brekke, P., Karud, J., Maltby, P., Aschenbach, B., Bräuninger, H., Kühne, M., Hollandt, J., Siegmund, O.H.W., Huber, M.C.E., Gabriel, A.H., Mason, H.E., Bromage, B.J.I.: 1995, The Coronal Diagnostic Spectrometer for the solar and heliospheric observatory. Solar Phys. 162, 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harvey, K.L., Zwaan, C.: 1993, Properties and emergence patterns of bipolar active regions – part one. Solar Phys. 148, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jaeggli, S.A., Norton, A.A.: 2016, The magnetic classification of solar active regions 1992–2015. Astrophys. J. Lett. 820, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kallunki, J., Uunila, M.: 2017, Sizes of solar active regions at 8 mm. Astron. Nachr. 338, 398. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kobayashi, K., Cirtain, J., Winebarger, A.R., Korreck, K., Golub, L., Walsh, R.W., De Pontieu, B., DeForest, C., Title, A., Kuzin, S., Savage, S., Beabout, D., Beabout, B., Podgorski, W., Caldwell, D., McCracken, K., Ordway, M., Bergner, H., Gates, R., McKillop, S., Cheimets, P., Platt, S., Mitchell, N., Windt, D.: 2014, The high-resolution coronal imager (Hi-C). Solar Phys. 289, 4393. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kontogiannis, I., Georgoulis, M.K., Park, S.-H., Guerra, J.A.: 2018, Testing and improving a set of morphological predictors of flaring activity. Solar Phys. 293, 96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Christe, S., Glesener, L., McBride, S., Turin, P., Glaser, D., Saint-Hilaire, P., Delory, G., Lin, R.P., Gubarev, M., Ramsey, B., Terada, Y., Ishikawa, S.-N., Kokubun, M., Saito, S., Takahashi, T., Watanabe, S., Nakazawa, K., Tajima, H., Masuda, S., Minoshima, T., Shomojo, M.: 2009, The Focusing Optics X-ray Solar Imager (FOXSI). In: Optics for EUV, X-Ray, and Gamma-Ray Astronomy IV, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 7437, 743705. DOI. ADS.

    Chapter  Google Scholar 

  • Krucker, S., Christe, S., Glesener, L., Ishikawa, S.-n., Ramsey, B., Takahashi, T., Watanabe, S., Saito, S., Gubarev, M., Kilaru, K., Tajima, H., Tanaka, T., Turin, P., McBride, S., Glaser, D., Fermin, J., White, S., Lin, R.: 2014, First images from the Focusing Optics X-ray Solar Imager. Astrophys. J. Lett. 793, L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Künzel, H.: 1960, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr. 285, 271. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leka, K.D., Park, S.-H., Kusano, K., Andries, J., Barnes, G., Bingham, S., Bloomfield, D.S., McCloskey, A.E., Delouille, V., Falconer, D., Gallagher, P.T., Georgoulis, M.K., Kubo, Y., Lee, K., Lee, S., Lobzin, V., Mun, J., Murray, S.A., Hamad Nageem, T.A.M., Qahwaji, R., Sharpe, M., Steenburgh, R.A., Steward, G., Terkildsen, M.: 2019a, A comparison of flare forecasting methods. II. Benchmarks, metrics, and performance results for operational solar flare forecasting systems. Astrophys. J. Suppl. 243, 36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leka, K.D., Park, S.-H., Kusano, K., Andries, J., Barnes, G., Bingham, S., Bloomfield, D.S., McCloskey, A.E., Delouille, V., Falconer, D., Gallagher, P.T., Georgoulis, M.K., Kubo, Y., Lee, K., Lee, S., Lobzin, V., Mun, J., Murray, S.A., Hamad Nageem, T.A.M., Qahwaji, R., Sharpe, M., Steenburgh, R.A., Steward, G., Terkildsen, M.: 2019b, A comparison of flare forecasting methods. III. Systematic behaviors of operational solar flare forecasting systems. Astrophys. J. 881, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • McCloskey, A.E., Gallagher, P.T., Bloomfield, D.S.: 2018, Flare forecasting using the evolution of McIntosh sunspot classifications. J. Space Weather Space Clim. 8, A34. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Milligan, R.O., Ireland, J.: 2018, On the performance of multi-instrument solar flare observations during solar cycle 24. Solar Phys. 293, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murray, S.A., Bingham, S., Sharpe, M., Jackson, D.R.: 2017, Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15, 577. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murray, S.A., Guerra, J.A., Zucca, P., Park, S.-H., Carley, E.P., Gallagher, P.T., Vilmer, N., Bothmer, V.: 2018, Connecting coronal mass ejections to their solar active region sources: combining results from the HELCATS and FLARECAST projects. Solar Phys. 293, 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Norquist, D.C.: 2011, An analysis of the sunspot groups and flares of solar cycle 23. Solar Phys. 269, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rachmeler, L.A., Winebarger, A.R., Savage, S.L., Golub, L., Kobayashi, K., Vigil, G.D., Brooks, D.H., Cirtain, J.W., De Pontieu, B., McKenzie, D.E., Morton, R.J., Peter, H., Testa, P., Tiwari, S.K., Walsh, R.W., Warren, H.P., Alexander, C., Ansell, D., Beabout, B.L., Beabout, D.L., Bethge, C.W., Champey, P.R., Cheimets, P.N., Cooper, M.A., Creel, H.K., Gates, R., Gomez, C., Guillory, A., Haight, H., Hogue, W.D., Holloway, T., Hyde, D.W., Kenyon, R., Marshall, J.N., McCracken, J.E., McCracken, K., Mitchell, K.O., Ordway, M., Owen, T., Ranganathan, J., Robertson, B.A., Payne, M.J., Podgorski, W., Pryor, J., Samra, J., Sloan, M.D., Soohoo, H.A., Steele, D.B., Thompson, F.V., Thornton, G.S., Watkinson, B., Windt, D.: 2019, The High-Resolution Coronal Imager, flight 2.1. Solar Phys. 294, 174. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ternullo, M., Contarino, L., Romano, P., Zuccarello, F.: 2006, A statistical analysis of sunspot groups hosting M and X flares. Astron. Nachr. 327, 36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing, M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kühne, M., Timothy, J.G., Hassler, D.M., Siegmund, O.H.W.: 1995, SUMER – solar ultraviolet measurements of emitted radiation. Solar Phys. 162, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., Howard, R.A.: 2005, Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res. 110, A12S05. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2008, Spatial relationship between solar flares and coronal mass ejections. Astrophys. J. 673, 1174. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee, whose careful review improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Declarations of Potential Conflicts of Interest

This work builds on analysis undertaken as part of the FOXSI SMEX Phase A study. The Phase A study was funded in part by funds from NASA and funds internal to NASA Goddard Space Flight Center. The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Flare Productivity of McIntosh Classifications

Appendix: Flare Productivity of McIntosh Classifications

There are multiple estimates of the flare productivity of different McIntosh active region classifications. Many of these flare rates are based on relatively small number statistics and are subject to significant uncertainty. In the main body of the paper, we adopt the M-class flare rates published by Bloomfield et al. (2012). However, it is useful to compare the results of the simulation using alternative sources. Combined M- and X-class flare rates were previously published by Bornmann and Shaw (1994). Additionally, Bornmann and Shaw (1994) suggested that flare productivity of any active region could be estimated by averaging the overall productivity of each of the three McIntosh parameter values. One motivation for this approach is the ability to estimate the productivity of a region that has not been observed or has very few observations.

Figure 12a shows the flare productivity values published by Bloomfield et al. (2012) (blue) compared with the estimates by Bornmann and Shaw (1994) (orange). We can see that the overall trends in these datasets are consistent, with a few prominent outliers of note. Both datasets agree that the five most productive regions are those designated EKC, FKC, EHC, FSI, and FKI, with differences in the exact productivity values and ordering.

Figure 12
figure 12

Top: The flare productivity estimates for each McIntosh active region classification according to Bloomfield et al. (2012) (blue) and Bornmann and Shaw (1994) (orange). For the Bloomfield et al. (2012) estimates, we take the values calculated for M-class solar flares, whereas the Bornmann and Shaw (1994) values combine M- and X-class solar flares. Bottom: The rank order of each of the McIntosh active region classifications in terms of their flare productivity. Rank 1 is the most flare-productive classification.

Figure 12b illustrates the comparison of these datasets via their rank ordering, where rank 1 is the most flare-productive region. This reinforces that both datasets agree on the overall trend of productivities, with localized differences in the ordering. The most notable deviation is the classification FAO; in the original Bornmann and Shaw (1994), this classification was assigned a productivity of 0.0; however, in Bloomfield et al. (2012), it has an estimated productivity of 0.21 flares/day, the 25th most productive classification. The FHO classification was also assigned a productivity of 0.0 by Bornmann and Shaw (1994) but has a productivity of 0.05 in Bloomfield et al. (2012). The other most notable discrepancy is that the FKI and EKI McIntosh classifications are both considered much more productive in the Bornmann and Shaw (1994) dataset compared with the Bloomfield et al. (2012) dataset, both in flare productivity value and in their rank order.

Figure 13 shows the impact of adopting these different methods of ranking McIntosh classifications on the mission performance. This simulation used the 12-hour delay scenario (see Section 4.1). From this it is clear that the difference is small; using the Bloomfield et al. (2012) flare productivities, a mean of 39.7% of \(>\text{M1}\) flares was observed, whereas when the Bornmann and Shaw (1994) data were adopted, the mean percentage of flares observed was 39.6%. Interestingly, the “averaging” method proposed by Bornmann and Shaw (1994) performs slightly better than the explicit data-based approaches, observing a mean of 41.3% of available flares. However, this approach is more challenging to scientifically justify, and we therefore choose not to adopt it in the main body of this work.

Figure 13
figure 13

The flare observing performance of the mission using the McIntosh target method and three different ways of estimating the flare productivity of McIntosh classifications. Left panel: Performance of the mission using flare productivities calculated using the Bloomfield et al. (2012) M-class flare productivities. This is used in the main body of the paper. Center: Mission performance using the flare productivity estimates from Bornmann and Shaw (1994). Right panel: Mission performance obtained by averaging the overall productivity of each individual McIntosh parameter, as originally suggested by Bornmann and Shaw (1994).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inglis, A.R., Ireland, J., Shih, A.Y. et al. Evaluating Pointing Strategies for Future Solar Flare Missions. Sol Phys 296, 153 (2021). https://doi.org/10.1007/s11207-021-01896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01896-0

Keywords

Navigation